Back to Search
Start Over
Constructing Turing complete Euler flows in dimension 3
- Source :
- Proceedings of the National Academy of Sciences of the United States of America, Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2021, 118 (19), pp.e2026818118. ⟨10.1073/pnas.XXXXXXXXXX⟩, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Digital.CSIC. Repositorio Institucional del CSIC, instname, Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 (19), pp.e2026818118. ⟨10.1073/pnas.2026818118⟩, Proc Natl Acad Sci U S A, Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2021, 118 (19), pp.e2026818118. ⟨10.1073/pnas.2026818118⟩, Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 (19), pp.e2026818118. ⟨10.1073/pnas.XXXXXXXXXX⟩
- Publication Year :
- 2021
- Publisher :
- HAL CCSD, 2021.
-
Abstract
- Can every physical system simulate any Turing machine? This is a classical problem that is intimately connected with the undecidability of certain physical phenomena. Concerning fluid flows, Moore [C. Moore, Nonlinearity 4, 199 (1991)] asked if hydrodynamics is capable of performing computations. More recently, Tao launched a program based on the Turing completeness of the Euler equations to address the blow-up problem in the Navier¿Stokes equations. In this direction, the undecidability of some physical systems has been studied in recent years, from the quantum gap problem to quantum-field theories. To the best of our knowledge, the existence of undecidable particle paths of three-dimensional fluid flows has remained an elusive open problem since Moore¿s works in the early 1990s. In this article, we construct a Turing complete stationary Euler flow on a Riemannian S3 and speculate on its implications concerning Tao¿s approach to the blow-up problem in the Navier¿Stokes equations.<br />Robert Cardona was supported by the Spanish Ministry of Economy and Competitiveness, through the María de Maeztu Program for Units of Excellence in R&D (MDM-2014-0445) via an FPI grant. R.C. and E.M. are partially supported by Grants MTM2015-69135-P/FEDER, the Spanish Ministry of Science and Innovation PID2019-103849GB-I00/AEI/10.13039/501100011033, and Agència de Gestió d’Ajuts Universitaris i de Recerca Grant 2017SGR932. E.M. is supported by the Catalan Institution for Research and Advanced Studies via an ICREA Academia Prize 2016. D.P.-S. is supported by MICINN Grant MTM PID2019-106715GB-C21 and MCIU Grant Europa Excelencia EUR2019-103821. F.P. is supported by MICINN/FEDER Grants MTM2016-79400-P and PID2019-108936GB-C21. This work was partially supported by ICMAT–Severo Ochoa Grant CEX2019-000904-S.
- Subjects :
- FOS: Computer and information sciences
Generalized shifts
[MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS]
MathematicsofComputing_NUMERICALANALYSIS
Mathematics::Analysis of PDEs
Dynamical Systems (math.DS)
Computational Complexity (cs.CC)
01 natural sciences
53 Differential geometry [Classificació AMS]
Physics::Fluid Dynamics
contact geometry
Mathematics - Analysis of PDEs
Political science
Incompressible Euler equations
0103 physical sciences
FOS: Mathematics
Incompressible euler equations
Turing complete
Mathematics - Dynamical Systems
0101 mathematics
[MATH]Mathematics [math]
010306 general physics
generalized shifts
Multidisciplinary
010102 general mathematics
Matemàtiques i estadística [Àrees temàtiques de la UPC]
language.human_language
incompressible Euler equations
Computer Science - Computational Complexity
TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES
Mathematics - Symplectic Geometry
Contact geometry
Physical Sciences
language
Symplectic Geometry (math.SG)
Catalan
Christian ministry
Humanities
Beltrami flow
Analysis of PDEs (math.AP)
Subjects
Details
- Language :
- English
- ISSN :
- 00278424 and 10916490
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America, Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2021, 118 (19), pp.e2026818118. ⟨10.1073/pnas.XXXXXXXXXX⟩, UPCommons. Portal del coneixement obert de la UPC, Universitat Politècnica de Catalunya (UPC), Digital.CSIC. Repositorio Institucional del CSIC, instname, Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 (19), pp.e2026818118. ⟨10.1073/pnas.2026818118⟩, Proc Natl Acad Sci U S A, Proceedings of the National Academy of Sciences of the United States of America, National Academy of Sciences, 2021, 118 (19), pp.e2026818118. ⟨10.1073/pnas.2026818118⟩, Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 (19), pp.e2026818118. ⟨10.1073/pnas.XXXXXXXXXX⟩
- Accession number :
- edsair.doi.dedup.....28cdee299422dafe3cfff6c3680d7d5d
- Full Text :
- https://doi.org/10.1073/pnas.XXXXXXXXXX⟩