1. Nonlinear mixed Jordan-type derivations on *-algebras.
- Author
-
Rehman, Nadeem Ur, Madni, Md Arshad, and Mozumder, Muzibur Rahman
- Subjects
- *
VON Neumann algebras , *INTEGERS , *JORDAN algebras - Abstract
Let 풜 {\mathcal{A}} be a unital ∗ {\ast} -algebra over the complex field ℂ {\mathbb{C}} . For any μ 1 , μ 2 , μ 3 , … , μ n ∈ 풜 {\mu_{1},\mu_{2},\mu_{3},\ldots,\mu_{n}\in\mathcal{A}} , a product μ 1 ∘ μ 2 = μ 1 μ 2 + μ 2 μ 1 \mu_{1}\circ\mu_{2}=\mu_{1}\mu_{2}+\mu_{2}\mu_{1} is called Jordan product and μ 1 ∙ μ 2 = μ 1 μ 2 + μ 2 μ 1 ∗ {\mu_{1}\bullet\mu_{2}=\mu_{1}\mu_{2}+\mu_{2}\mu_{1}^{\ast}} is called skew Jordan product. Define P 3 ( μ 1 , μ 2 , μ 3 ) = μ 1 ∘ μ 2 ∙ μ 3 P_{3}(\mu_{1},\mu_{2},\mu_{3})=\mu_{1}\circ\mu_{2}\bullet\mu_{3} (called mixed Jordan triple product) and P n ( μ 1 , μ 2 , … , μ n ) = μ 1 ∘ μ 2 ∘ ⋯ ∙ μ n P_{n}(\mu_{1},\mu_{2},\ldots,\mu_{n})=\mu_{1}\circ\mu_{2}\circ\cdots\bullet\mu% _{n} (called mixed Jordan
n -product) for all integer n ≥ 3 {n\geq 3} . In this article, it is shown that a map (called nonlinear mixed Jordann -derivation) φ : 풜 → 풜 {\varphi:\mathcal{A}\rightarrow\mathcal{A}} satisfies φ ( P n ( μ 1 , μ 2 , … , μ n ) ) = ∑ i = 1 n P n ( μ 1 , … , ν i - 1 , φ ( ν i ) , ν i + 1 , … , ν n ) {\varphi(P_{n}(\mu_{1},\mu_{2},\ldots,\mu_{n}))=\sum_{i=1}^{n}P_{n}(\mu_{1},% \ldots,\nu_{i-1},\varphi(\nu_{i}),\nu_{i+1},\ldots,\nu_{n})} for all ν 1 , ν 2 , … , ν n ∈ 풜 {\nu_{1},\nu_{2},\ldots,\nu_{n}\in\mathcal{A}} if and only if φ is an additive ∗ {\ast} -derivation. As applications, our main result is applied to several special classes of unital ∗ {\ast} -algebras such as prime ∗ {\ast} -algebras, factor von Neumann algebras and von Neumann algebras with no central summands of type I 1 {I_{1}} . [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF