Back to Search Start Over

Derivable maps at commutative products on Banach algebras.

Authors :
Zivari-Kazempour, Abbas
Ghahramani, Hoger
Source :
Acta Scientiarum Mathematicarum. May2024, Vol. 90 Issue 1/2, p165-174. 10p.
Publication Year :
2024

Abstract

Let A be a unital Banach algebra with unit e, M be a Banach A-bimodule, and w ∈ A . In this paper, we characterize those continuous linear maps δ : A → M that satisfy one of the following conditions: δ (a b) = δ (a) b + a δ (b) , 2 δ (w) = δ (a) b + a δ (b) , δ (a b) = δ (a) b + a δ (b) - a δ (e) b , for any a , b ∈ A with a b = b a = w , where w is either a separating point with w ∈ Z (A) or an idempotent. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*LINEAR operators

Details

Language :
English
ISSN :
00016969
Volume :
90
Issue :
1/2
Database :
Academic Search Index
Journal :
Acta Scientiarum Mathematicarum
Publication Type :
Academic Journal
Accession number :
177003193
Full Text :
https://doi.org/10.1007/s44146-023-00104-8