Back to Search
Start Over
Derivable maps at commutative products on Banach algebras.
- Source :
-
Acta Scientiarum Mathematicarum . May2024, Vol. 90 Issue 1/2, p165-174. 10p. - Publication Year :
- 2024
-
Abstract
- Let A be a unital Banach algebra with unit e, M be a Banach A-bimodule, and w ∈ A . In this paper, we characterize those continuous linear maps δ : A → M that satisfy one of the following conditions: δ (a b) = δ (a) b + a δ (b) , 2 δ (w) = δ (a) b + a δ (b) , δ (a b) = δ (a) b + a δ (b) - a δ (e) b , for any a , b ∈ A with a b = b a = w , where w is either a separating point with w ∈ Z (A) or an idempotent. [ABSTRACT FROM AUTHOR]
- Subjects :
- *LINEAR operators
Subjects
Details
- Language :
- English
- ISSN :
- 00016969
- Volume :
- 90
- Issue :
- 1/2
- Database :
- Academic Search Index
- Journal :
- Acta Scientiarum Mathematicarum
- Publication Type :
- Academic Journal
- Accession number :
- 177003193
- Full Text :
- https://doi.org/10.1007/s44146-023-00104-8