1. Mice, myeloid cells, and dengue: a new model for unraveling vascular leakage mysteries.
- Author
-
Takeshi Kurosu, Yusuke Sakai, Yasusi Ami, Masayuki Shimojima, Tomoki Yoshikawa, Shuetsu Fukushi, Noriyo Nagata, Tadaki Suzuki, Hideki Ebihara, and Masayuki Saijo
- Subjects
DENGUE viruses ,MYELOID cells ,DENGUE ,LEAKAGE ,BONE marrow ,MICE ,FENITROTHION - Abstract
Introduction: Severe dengue is thought to be caused by an excessive host immune response. Methods: To study the pathogenesis of severe dengue, we developed a novel model using LysM Cre+Ifnar
flox/flox mice carrying depleted Ifnar expression only in subsets of murine myeloid cells. Results: Although dengue virus (DENV) clinical isolates were not virulent in LysM Cre+Ifnarflox/flox mice, mouse-adapted DV1-5P7Sp and DV3P12/08P4Bm, which were obtained by passaging the spleen or bone marrow of mice, demonstrated 100% lethality with severe vascular leakage in the liver and small intestine. DV1-5P7Sp and DV3P12/08P4Bm harbored five and seven amino acid substitutions, respectively. Infection also induced neutrophil infiltration in the small intestine, and increased expression of IL-6 and MMP-8 and blockade of TNF-α signaling protected the mice, as demonstrated in a previous severe dengue mouse model using C57/BL6 mice lacking both IFN-α/β and IFN-γ receptors. Notably, the new models with DV1-5P7Sp and DV3P12/08P4Bm showed an increased proliferative capacity of the adapted viruses in the thymus and bone marrow. Discussion: These observations suggest that myeloid cell infection is sufficient to trigger cytokine storm-induced vascular leakage. This model can refine the factors involved in the pathology of severe dengue leading to vascular leakage. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF