824 results on '"Thiruvengadam Muthu"'
Search Results
402. Reactive oxygen and nitrogen species in plant defense mechanisms.
- Author
-
Venkidasamy B, Ghorbanpour M, and Thiruvengadam M
- Abstract
Competing Interests: Declarations. Conflict of interest: The authors declare that they have no conflicts of interest.
- Published
- 2024
- Full Text
- View/download PDF
403. Comparative study for metabolomics, antioxidant activity, and molecular docking simulation of the newly bred Korean red rice accessions.
- Author
-
Moon HS, Thiruvengadam M, Chi HY, Kim B, Prabhu S, Chung IM, and Kim SH
- Subjects
- Oryza chemistry, Oryza metabolism, Antioxidants chemistry, Antioxidants metabolism, Molecular Docking Simulation, Metabolomics
- Abstract
This study analyzed the metabolite profiles and antioxidant capacities of two waxy and non-waxy Korean red rice accessions newly bred. Fifteen phenolic compounds were detected in the rice samples. Accession1 had high fatty acids, phytosterols, and vitamin E; accession3 had high vitamin E and phytosterol; and accession4 had a high total flavonoid. The correlation analysis findings from this study validated the positive association between all the metabolites and antioxidant activity. in silico results revealed that protocatechuic acid had a docking score of -9.541, followed by luteolin, quercetin, and caffeic acid, all of which had significant docking scores and a significant number of contacts. Similarly, molecular dynamics simulations showed that phytochemicals had root mean square deviation values of <2.8 Å with Keap 1, indicating better stability. This study provides valuable insights into potential directions for future investigations and improvements in the functional qualities of other colored rice varieties., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this study., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
404. Halogenated chalcones against Mycobacterium tuberculosis targeting InhA: Rational design, in silico and in vitro evaluation.
- Author
-
Dhivya LS, Manoharadas S, Pandiaraj S, Thiruvengadam M, Viswanathan D, and Govindasamy R
- Subjects
- Drug Design, Computer Simulation, Structure-Activity Relationship, Halogenation, Protein Binding, Mycobacterium tuberculosis drug effects, Antitubercular Agents pharmacology, Antitubercular Agents chemistry, Antitubercular Agents chemical synthesis, Chalcones pharmacology, Chalcones chemistry, Chalcones chemical synthesis, Bacterial Proteins antagonists & inhibitors, Bacterial Proteins metabolism, Bacterial Proteins chemistry, Oxidoreductases antagonists & inhibitors, Oxidoreductases metabolism, Microbial Sensitivity Tests, Molecular Docking Simulation
- Abstract
A library of 25-series compounds was designed against Mycobacterium Tuberculosis (M.tb) to identify novel antitubercular drugs. In silico inhibition of InhA, an essential component of FAS-II, was successfully achieved. The drug ability, lead-likeness, and toxicity of the compounds were assessed using Swiss ADME, pkCSM, and Osiris Property Explorer, which revealed the potential for drug development of chalcone compounds. Through in silico research, it was confirmed that toxic-free compounds could bind to InhA. It was found that all of the compounds bind to InhA with binding affinities ranging from -7.78 to -10.29 kcal/mol
-1 which is higher than the reference standard Isoniazid and Pyrazinamide. The top five compounds were synthesized from 15 toxic-free compounds. The structural characteristics of the compounds were determined using IR, NMR, and mass spectrometry techniques. These findings indicate that these substances are competitive, reversible, and specific InhA inhibitors of InhA. using the Alamar Blue assay method (H37RV, ATCC No. 27294), the in vitro anti-mycobacterial activity of each of the synthesized compounds against M.tb was evaluated. The two most powerful compounds were (2E)-3-[4-(benzyloxy)-3,5-dimethylphenyl] and (2E)-1-(3,5-dibromophenyl)-3-(3-phenoxyphenyl) prop-2-en-1-one. In the MABA Assay, the MIC for 1-(3,5-dibromophenyl) prop-2-en-1-one was 6.25 μg/ml., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
405. Fructose 1,6-bisphosphate aldolase: A promising prognostic marker for oral cancer and its role in radiotherapy response.
- Author
-
Thiruvengadam R, Kim SH, and Thiruvengadam M
- Subjects
- Humans, Prognosis, Radiation Tolerance, Fructose-Bisphosphate Aldolase metabolism, Mouth Neoplasms radiotherapy, Mouth Neoplasms pathology, Biomarkers, Tumor metabolism
- Abstract
Oral cancer remains a significant global health concern and its early detection plays a crucial role in improving patient outcomes. Identifying reliable prognostic markers is essential to guide treatment decisions and enhance survival rates. Fructose 1,6-bisphosphate aldolase (FBA), a glycolytic enzyme, has emerged as a promising candidate for prognostic assessment of oral cancer. This review highlights the role of FBA in tumorigenesis, its potential utility in predicting disease progression and patient survival, and its influence on response to radiotherapy. Recent studies have suggested that dysregulated metabolic pathways involving FBA may contribute to radiation resistance in oral cancer, emphasizing the need for further exploration of FBA-targeted therapeutic strategies. Understanding the role of FBA in oral cancer pathogenesis could pave the way for the development of personalized treatment strategies, including combined radiotherapy., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
406. Emerging trends in natural product synthesis: insights and implications.
- Author
-
Thiruvengadam R, Rakesh M M, and Thiruvengadam M
- Published
- 2024
- Full Text
- View/download PDF
407. Extracellular vesicles in oral oncology: interplay between the tumor microenvironment and disease progression.
- Author
-
Thiruvengadam R and Thiruvengadam M
- Subjects
- Humans, Extracellular Vesicles metabolism, Tumor Microenvironment physiology, Mouth Neoplasms pathology, Mouth Neoplasms diagnosis, Disease Progression
- Abstract
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
- Published
- 2024
- Full Text
- View/download PDF
408. Physiological, biochemical, and molecular mechanisms of plants towards nanopollution.
- Author
-
Venkidasamy B and Thiruvengadam M
- Subjects
- Plant Physiological Phenomena, Nanoparticles chemistry, Plants metabolism
- Published
- 2024
- Full Text
- View/download PDF
409. Safeguarding Public Health: Advanced Detection of Food Adulteration Using Nanoparticle-Based Sensors.
- Author
-
Thiruvengadam M, Kim JT, Kim WR, Kim JY, Jung BS, Choi HJ, Chi HY, Govindasamy R, and Kim SH
- Abstract
Food adulteration, whether intentional or accidental, poses a significant public health risk. Traditional detection methods often lack the precision required to detect subtle adulterants that can be harmful. Although chromatographic and spectrometric techniques are effective, their high cost and complexity have limited their widespread use. To explore and validate the application of nanoparticle-based sensors for enhancing the detection of food adulteration, focusing on their specificity, sensitivity, and practical utility in the development of resilient food safety systems. This study integrates forensic principles with advanced nanomaterials to create a robust detection framework. Techniques include the development of nanoparticle-based assays designed to improve the detection specificity and sensitivity. In addition, sensor-based technologies, including electronic noses and tongues, have been assessed for their capacity to mimic and enhance human sensory detection, offering objective and reliable results. The use of nanomaterials, including functionalized nanoparticles, has significantly improved the detection of trace amounts of adulterants. Nanoparticle-based sensors demonstrate superior performance in terms of speed, sensitivity, and selectivity compared with traditional methods. Moreover, the integration of these sensors into food safety protocols shows promise for real-time and onsite detection of adulteration. Nanoparticle-based sensors represent a cutting-edge approach for detecting food adulteration, and offer enhanced sensitivity, specificity, and scalability. By integrating forensic principles and nanotechnology, this framework advances the development of more resilient food-safety systems. Future research should focus on optimizing these technologies for widespread application and adapting them to address emerging adulteration threats.
- Published
- 2024
- Full Text
- View/download PDF
410. Editorial: Diet, nutrition, and functional foods for chronic pain.
- Author
-
Field R, Pourkazemi F, Hashempur MH, Thiruvengadam M, and Rooney K
- Abstract
Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
- Published
- 2024
- Full Text
- View/download PDF
411. Multitargeted pharmacokinetics, molecular docking and network pharmacology-based identification of effective phytocompounds from Sauropus androgynus (L.) Merr for inflammation and cancer treatment.
- Author
-
Gayathiri E, Prakash P, Ahamed M, Pandiaraj S, Venkidasamy B, Dayalan H, Thangaraj P, Selvam K, Chaudhari SY, Govindasamy R, and Thiruvengadam M
- Subjects
- Humans, Phytochemicals chemistry, Phytochemicals pharmacology, Protein Interaction Maps drug effects, Plant Extracts chemistry, Plant Extracts pharmacology, Molecular Dynamics Simulation, Protein Binding, Molecular Docking Simulation, Network Pharmacology, Inflammation drug therapy, Neoplasms drug therapy
- Abstract
According to worldwide health data, cancer, and inflammatory illnesses are on the rise and are among the most common causes of death. Across the world, these types of health problems are now considered top priorities for government health organizations. Hence, this study aimed to investigate medicinal plants' potential for treating cancer and inflammatory disorders. This network pharmacology analysis aims to learn more about the potential targets and mechanisms of action for the bioactive ingredients in Sauropus androgynus (L.) Merr L. The compound-target network and protein-protein interaction analysis were built using the STRING database. Using Network Analyst, Gene Ontology, and Kyoto Encyclopaedia of Genes and Genomes, pathway enrichment was performed on the hub genes. 1-hexadecanol was shown to inhibit drug-metabolizing enzymes in a pharmacokinetic investigation. Those samples of 1-hexadecanol were found to be 1-hexadecanol (BBB 0.783), GI High, Pgp Substrate Yes, CYP2C19 Inhibitor Yes, CYP2D6 Yes, and HI -89.803. The intermolecular binding energies for 1-hexadecanol (4-DRI, -8.2 kcal/mol) are evaluated. These results from a study on S. androgynus used molecular docking and network pharmacology to gain insight into the prime target genes and potential mechanisms identified for AKT1, mTOR, AR, PPID, FKBP5, and NR3C1. The PI3K-Akt signalling pathway has become an important regulatory node in various pathological processes requiring coordinated actions. Stability and favourable conformations have been resolved by considering nonbonding interactions such as electrostatic and hydrogen bonds in MD simulations of the perfect molecules using the Desmond package. Thus, using an appropriate platform of network pharmacology, molecular docking, and in vitro experiments, this study provides for the first time a clearer knowledge of the anti-cancer and anti-inflammatory molecular bioactivities of S. androgynus. Further in vitro and in vivo confirmations are strongly needed to determine the efficacy and therapeutic effects of 1-hexadecanol in the biological process.Communicated by Ramaswamy H. Sarma.
- Published
- 2024
- Full Text
- View/download PDF
412. Targeting the YAP/TAZ Hippo signaling pathway for oral cancer treatment.
- Author
-
Thiruvengadam M
- Abstract
Competing Interests: The author declares no conflicting interests.
- Published
- 2024
- Full Text
- View/download PDF
413. Radioresistance in brain tumors: Strategies for improved radiotherapy outcomes.
- Author
-
Thiruvengadam M
- Abstract
Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
- Published
- 2024
- Full Text
- View/download PDF
414. Unravelling the Untapped Pharmacological Potential of Plant Molecules as Inhibitors of BACE1: In Silico Explorations for Alzheimer's Disease.
- Author
-
Kalaimathi K, Prabhu S, Ayyanar M, Thiruvengadam M, Shine K, Vijaya Prabhu S, and Amalraj S
- Subjects
- Humans, Phytochemicals chemistry, Phytochemicals pharmacology, Neuroprotective Agents pharmacology, Neuroprotective Agents chemistry, Polyphenols chemistry, Polyphenols pharmacology, Alzheimer Disease drug therapy, Alzheimer Disease metabolism, Amyloid Precursor Protein Secretases antagonists & inhibitors, Amyloid Precursor Protein Secretases metabolism, Aspartic Acid Endopeptidases antagonists & inhibitors, Aspartic Acid Endopeptidases metabolism, Molecular Docking Simulation
- Abstract
Alzheimer's disease (AD) is an extremely complex, heterogeneous, and multifactorial neurodegenerative disease clinically characterized by progressive memory loss and progressive decline in cognitive function. There is currently no effective treatment for the onset and/or progression of the pathophysiological diseases of AD. The global prevalence of this disease has increased in recent years due to modern lifestyle. Therefore, there is an urgent need to develop a drug with significant neuroprotective potential. Since plant metabolites, especially polyphenols, have important pharmacological properties acting against β-amyloid (Aβ), Tau, neuroinflammation, and oxidative stress, such phytochemicals were selected in the present research. Using the Schrödinger tool (Maestro V.13.6), the drug potency of these metabolites was studied after installation in the highly configured workstation. Among the 120 polyphenols docked, amygdalin showed notable docking values of - 11.2638, followed by eriocitrin (- 10.9569), keracyanin (- 10.7086), and amaroswerin (- 9.48126). The prominent MM-GBSA values of these molecules were - 62.8829, - 52.1914, - 68.6307, and - 63.1074, respectively. The MM-GBSA energy values demonstrated the drug stability of these molecules for β-site amyloid precursor protein-cleaving enzyme 1 (BACE1)-causing AD. In the absorption and distribution assessment, these phytochemicals showed significantly better values than the inhibitors CNP520. The chosen phytochemicals have been demonstrated as non-hepatotoxic; however, the BACE1 inhibitor CNP520 is hepatotoxic. In both the molecular docking and ADMET assessments, these natural chemicals have shown optimism as potential drug candidates for Alzheimer's disease. However, in order to understand the detailed biological metabolism of these compounds in AD, they need to be evaluated in in vivo studies to validate its efficacy., (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
415. Green synthesis of silver and gold nanoparticles in Callistemon viminalis extracts and their antimicrobial activities.
- Author
-
Khan S, Rauf A, Aljohani ASM, Al-Awthan YS, Ahmad Z, Bahattab OS, Khan S, Saadiq M, Khan SA, Thiruvengadam R, and Thiruvengadam M
- Subjects
- Microbial Sensitivity Tests, Bacteria drug effects, Bacteria growth & development, Anti-Bacterial Agents pharmacology, Anti-Bacterial Agents chemistry, Anti-Bacterial Agents chemical synthesis, Fungi drug effects, Antifungal Agents pharmacology, Antifungal Agents chemistry, Metal Nanoparticles chemistry, Silver chemistry, Silver pharmacology, Gold chemistry, Green Chemistry Technology, Plant Extracts chemistry, Plant Extracts pharmacology, Anti-Infective Agents pharmacology, Anti-Infective Agents chemistry
- Abstract
In the current study, the bottlebrush [Callistemon viminalis (Sol. ex Gaertn.) G. Don] plant was selected for the green synthesis of silver (Ag) and gold (Au) nanoparticles and to evaluate its antibacterial and antifungal activities. Phytochemical screening of C. viminalis confirmed the presence of alkaloids, anthraquinones, saponins, tannins, betacyanins, phlobatanins, coumarins, terpenoids, steroids, glycosides, and proteins. To characterize the synthesized Ag and Au NPs, UV-Visible spectroscopy, FTIR spectroscopy for functional group identification, field emission scanning electron microscopy (FE-SEM) for particle size, and elemental analysis were performed using EDX. The UV-Visible absorption spectra of the green-synthesized Ag and Au nanoparticles were found to have a maximum absorption band at 420 nm for Ag NPs and 525 nm for Au NPs. FE-SEM analysis of the synthesized NPs revealed a circular shape with a size of 100 nm. Elemental analysis was performed for the synthesis of Ag and Au NPs, which confirmed the purity of the nanoparticles. The greenly synthesized Ag and Au NPs were also evaluated for their anti-bacterial and anti-fungal activities, which exhibited prominent inhibition activities against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Candida albicans, C. krusei, Aspergillus sp., and Trichoderma species. The highest zone of inhibition 15.5 ± 0.75 and 15 ± 0.85 mm was observed for Ag NPs against E. coli and P. aeruginosa. Similarly, Trichoderma sp. and Aspergillus sp. were inhibited by Ag NPs up to 13.5 ± 0.95 and 13 ± 0.70 mm. This work will open doors for the development of new antimicrobial agents using green chemistry., (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
416. Deciphering the Anticancer Arsenal of Piper longum : Network Pharmacology and Molecular Docking Unveil Phytochemical Targets Against Lung Cancer.
- Author
-
Varadharajan V, Balu AK, Shiju A, Muthuramalingam P, Shin H, Venkidasamy B, Alharbi NS, Kadaikunnan S, and Thiruvengadam M
- Subjects
- Humans, Antineoplastic Agents, Phytogenic pharmacology, Antineoplastic Agents, Phytogenic therapeutic use, Antineoplastic Agents, Phytogenic chemistry, Protein Interaction Maps drug effects, Plant Extracts pharmacology, Plant Extracts therapeutic use, Plant Extracts chemistry, Phytochemicals pharmacology, Phytochemicals therapeutic use, Phytochemicals chemistry, Plants, Medicinal chemistry, Lung Neoplasms drug therapy, Lung Neoplasms pathology, Piper chemistry, Molecular Docking Simulation, Network Pharmacology
- Abstract
Introduction: Lung cancer, characterized by uncontrolled cellular proliferation within the lung tissues, is the predominant cause of cancer-related fatalities worldwide. The traditional medicinal herb Piper longum has emerged as a significant contender in oncological research because of its documented anticancer attributes, suggesting its potential for novel therapeutic development. Methods: This study adopted network pharmacology and omics methodology to elucidate the anti-lung cancer potential of P. longum by identifying its bioactive constituents and their corresponding molecular targets. Results: Through a comprehensive literature review and the Integrated Medicinal Plant Phytochemistry and Therapeutics database (IMPPAT), we identified 33 bioactive molecules from P. longum . Subsequent analyses employing tools such as SwissTargetPrediction, SuperPred, and DIGEP-Pred facilitated the isolation of 676 potential targets, among which 72 intersected with 666 lung cancer-associated genetic markers identified through databases including the Therapeutic Target Database (TTD), Online Mendelian Inheritance in Man (OMIM), and GeneCards. Further validation through protein-protein interaction (PPI) networks, gene ontology, pathway analyses, boxplots, and overall survival metrics underscored the therapeutic potential of compounds such as 7-epi-eudesm-4(15)-ene-1β, demethoxypiplartine, methyl 3,4,5-trimethoxycinnamate, 6-alpha-diol, and aristolodione. Notably, our findings reaffirm the relevance of lung cancer genes, such as CTNNB1, STAT3, HIF1A, HSP90AA1, and ERBB2, integral to various cellular processes and pivotal in cancer genesis and advancement. Molecular docking assessments revealed pronounced affinity between 6-alpha-diol and HIF1A, underscoring their potential as therapeutic agents for lung cancer. Conclusion: This study not only highlights the bioactive compounds of P. longum but also reinforces the molecular underpinnings of its anticancer mechanism, paving the way for future lung cancer therapeutics., Competing Interests: Competing Interests: The authors have declared that no competing interest exists., (© The author(s).)
- Published
- 2024
- Full Text
- View/download PDF
417. Dynamic interplay of reactive oxygen and nitrogen species (ROS and RNS) in plant resilience: unveiling the signaling pathways and metabolic responses to biotic and abiotic stresses.
- Author
-
Thiruvengadam R, Venkidasamy B, Easwaran M, Chi HY, Thiruvengadam M, and Kim SH
- Subjects
- Plant Physiological Phenomena, Plant Development, Reactive Oxygen Species metabolism, Reactive Nitrogen Species metabolism, Signal Transduction, Stress, Physiological, Plants metabolism
- Abstract
Key Message: Plants respond to environmental challenges by producing reactive species such as ROS and RNS, which play critical roles in signaling pathways that lead to adaptation and survival strategies. Understanding these pathways, as well as their detection methods and effects on plant development and metabolism, provides insight into increasing crop tolerance to combined stresses. Plants encounter various environmental stresses (abiotic and biotic) that affect plant growth and development. Plants sense biotic and abiotic stresses by producing different molecules, including reactive species, that act as signaling molecules and stimulate secondary messengers and subsequent gene transcription. Reactive oxygen and nitrogen species (ROS and RNS) are produced in both physiological and pathological conditions in the plasma membranes, chloroplasts, mitochondria, and endoplasmic reticulum. Various techniques, including spectroscopy, chromatography, and fluorescence methods, are used to detect highly reactive, short-half-life ROS and RNS either directly or indirectly. In this review, we highlight the roles of ROS and RNS in seed germination, root development, senescence, mineral nutrition, and post-harvest control. In addition, we provide information on the specialized metabolism involved in plant growth and development. Secondary metabolites, including alkaloids, flavonoids, and terpenoids, are produced in low concentrations in plants for signaling and metabolism. Strategies for improving crop performance under combined drought and pathogen stress conditions are discussed in this review., (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
418. Prevalence, antimicrobial susceptibility patterns and associated factors of Streptococcus pyogenes among apparently healthy school children in Mekelle city primary schools, Northern Ethiopia.
- Author
-
Meles HN, Aregawi BB, Gebregergis MW, Hailekiros H, Weldu Y, Thangaraju P, Thiruvengadam M, Alharbi NS, and Saravanan M
- Abstract
Background: Streptococcus pyogenes is one of the major public health concerns causing human infections ranging from skin and throat infections to acute rheumatic fever and post streptococcal glomerulonephritis. Moreover, nowadays drug-resistant strains of S. pyogenes are emerging and can be transmitted through apparently healthy carriers to susceptible individuals., Objective: To assess the prevalence, antimicrobial susceptibility pattern and associated factors S. pyogenes among apparently healthy school children in Mekelle city primary schools, Northern Ethiopia., Methods: A cross-sectional study was conducted among 504 apparently healthy school children from February to May 2018. We used structured questionnaire to collect socio-demographic data. Throat specimens were collected using sterile cotton Swab and transported for culture, antimicrobial susceptibility and identification of S. pyogenes according to standard operating procedures. Data were analyzed using Stata 13 for descriptive statistics, bivariate and multivariate logistic regression. P -value <0.05 was declared statistically significance., Results: The mean age of the study participants was 11.5 years of which 55 % of them were females. The overall prevalence of S. pyogenes was 8.3 %. Being female, having low monthly income, weak personal hygiene, poor hand washing habit and crowded living style were significantly associated with the occurrence of S. pyogenes . The isolates of S. pyogenes showed resistance to Penicillin (69.1 %), Amoxicillin-Clavulanic acid (62 %), Ampicillin (54.6 %), Ceftriaxone (47.6 %), Tetracycline (14.4 %), Cefoxitin (7.2 %). About 57.15 % isolates were multidrug-resistant., Conclusions: This study revealed that some isolates of S. pyogenes among the apparently healthy school children were resistant to commonly prescribed antibiotic agents and associated with hygienic conditions and living style. Therefore, it is recommended to practice antimicrobial susceptibility test to maintain rational antibiotic use and improve hygienic and hand washing practices to decrease the likelihood of carriage rate., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2024 The Authors.)
- Published
- 2024
- Full Text
- View/download PDF
419. Neuroinflammation: Unraveling its role in neurodegenerative diseases.
- Author
-
Thiruvengadam M
- Abstract
Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
- Published
- 2024
- Full Text
- View/download PDF
420. Network pharmacology: an efficient but underutilized approach in oral, head and neck cancer therapy-a review.
- Author
-
Muthuramalingam P, Jeyasri R, Varadharajan V, Priya A, Dhanapal AR, Shin H, Thiruvengadam M, Ramesh M, Krishnan M, Omosimua RO, Sathyaseelan DD, and Venkidasamy B
- Abstract
The application of network pharmacology (NP) has advanced our understanding of the complex molecular mechanisms underlying diseases, including neck, head, and oral cancers, as well as thyroid carcinoma. This review aimed to explore the therapeutic potential of natural network pharmacology using compounds and traditional Chinese medicines for combating these malignancies. NP serves as a pivotal tool that provides a comprehensive view of the interactions among compounds, genes, and diseases, thereby contributing to the advancement of disease treatment and management. In parallel, this review discusses the significance of publicly accessible databases in the identification of oral, head, and neck cancer-specific genes. These databases, including those for head and neck oral cancer, head and neck cancer, oral cancer, and genomic variants of oral cancer, offer valuable insights into the genes, miRNAs, drugs, and genetic variations associated with these cancers. They serve as indispensable resources for researchers, clinicians, and drug developers, contributing to the pursuit of precision medicine and improved treatment of these challenging malignancies. In summary, advancements in NP could improve the globalization and modernization of traditional medicines and prognostic targets as well as aid in the development of innovative drugs. Furthermore, this review will be an eye-opener for researchers working on drug development from traditional medicines by applying NP approaches., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2024 Muthuramalingam, Jeyasri, Varadharajan, Priya, Dhanapal, Shin, Thiruvengadam, Ramesh, Krishnan, Omosimua, Sathyaseelan and Venkidasamy.)
- Published
- 2024
- Full Text
- View/download PDF
421. Nano-based biofuel production from low-cost lignocellulose biomass: environmental sustainability and economic approach.
- Author
-
Sakthivel S, Muthusamy K, Thangarajan AP, Thiruvengadam M, and Venkidasamy B
- Subjects
- Nanostructures chemistry, Nanotechnology economics, Lignin metabolism, Lignin chemistry, Biofuels economics, Biomass
- Abstract
The use of nanomaterials in biofuel production from lignocellulosic biomass offers a promising approach to simultaneously address environmental sustainability and economic viability. This review provides an overview of the environmental and economic implications of integrating nanotechnology into biofuel production from low-cost lignocellulosic biomass. In this review, we highlight the potential benefits and challenges of nano-based biofuel production. Nanomaterials provide opportunities to improve feedstock pretreatment, enzymatic hydrolysis, fermentation, and catalysis, resulting in enhanced process efficiency, lower energy consumption, and reduced environmental impact. Conducting life cycle assessments is crucial for evaluating the overall environmental footprint of biofuel production. An economic perspective that focuses on the cost implications of utilizing nanomaterials in biofuel production is also discussed. A comprehensive understanding of both environmental and economic dimensions is essential to fully harness the potential of nanomaterials in biofuel production from lignocellulosic biomass and to move towards sustainable future energy., (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
422. Vanillic Acid Nanocomposite: Synthesis, Characterization Analysis, Antimicrobial, and Anticancer Potentials.
- Author
-
Venkidasamy B, Subramanian U, Almoallim HS, Alharbi SA, Lakshmikumar RRC, and Thiruvengadam M
- Subjects
- Humans, Silver chemistry, Silver pharmacology, Chitosan chemistry, Chitosan pharmacology, Microbial Sensitivity Tests, Staphylococcus aureus drug effects, Candida albicans drug effects, Escherichia coli drug effects, Metal Nanoparticles chemistry, Cell Line, Tumor, Vanillic Acid chemistry, Vanillic Acid pharmacology, Nanocomposites chemistry, Antineoplastic Agents pharmacology, Antineoplastic Agents chemistry, Antineoplastic Agents chemical synthesis, Anti-Infective Agents pharmacology, Anti-Infective Agents chemistry, Anti-Infective Agents chemical synthesis
- Abstract
Recently, nanoparticles have received considerable attention owing to their efficiency in overcoming the limitations of traditional chemotherapeutic drugs. In our study, we synthesized a vanillic acid nanocomposite using both chitosan and silver nanoparticles, tested its efficacy against lung cancer cells, and analyzed its antimicrobial effects. We used several characterization techniques such as ultraviolet-visible spectroscopy (UV-Vis), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDAX), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to determine the stability, morphological characteristics, and properties of the biosynthesized vanillic acid nanocomposites. Furthermore, the vanillic acid nanocomposites were tested for their antimicrobial effects against Escherichia coli and Staphylococcus aureus , and Candida albicans . The data showed that the nanocomposite effectively inhibited microbes, but its efficacy was less than that of the individual silver and chitosan nanoparticles. Moreover, the vanillic acid nanocomposite exhibited anticancer effects by increasing the expression of pro-apoptotic proteins (BAX, Casp3, Casp7, cyt C, and p53) and decreasing the gene expression of Bcl-2. Overall, vanillic acid nanocomposites possess promising potential against microbes, exhibit anticancer effects, and can be effectively used for treating diseases such as cancers and infectious diseases.
- Published
- 2024
- Full Text
- View/download PDF
423. Comparative investigation on chemical and green synthesized titanium dioxide nanoparticles against chromium (VI) stress eliciting differential physiological, biochemical, and cellular attributes in Helianthus annuus L.
- Author
-
Kumar D, Mariyam S, Gupta KJ, Thiruvengadam M, Sampatrao Ghodake G, Xing B, and Seth CS
- Subjects
- Metal Nanoparticles toxicity, Soil Pollutants, Oxidative Stress drug effects, Photosynthesis drug effects, Nanoparticles, Titanium toxicity, Helianthus drug effects, Chromium toxicity, Green Chemistry Technology
- Abstract
Nanotechnology is a new scientific area that promotes unique concepts to comprehend the optimal mechanics of nanoparticles (NPs) in plants under heavy metal stress. The present investigation focuses on effects of synthetic and green synthesized titanium dioxide nanoparticles (TiO
2 NPs and gTiO2 NPs) against Cr(VI). Green TiO2 NPs have been produced from plant leaf extract (Ricinus communis L.). Synthesis was confirmed employing an array of optical spectroscopic and electron microscopic techniques. Chromium strongly accelerated H2 O2 and MDA productions by 227 % and 266 % at highest chromium concentration (60 mg/kg of soil), respectively, and also caused DNA damage, and decline in photosynthesis. Additionally, anomalies were observed in stomatal cells with gradual increment in chromium concentrations. Conversely, foliar applications of TiO2 NPs and gTiO2 NPs considerably mitigated chromium stress. Sunflower plants treated with modest amounts of green TiO2 NPs had significantly better growth index compared to chemically synthesized ones. Principal component analysis highlighted the variations among photosynthetic attributes, oxidative stress markers, and antioxidant defense systems. Notably, gTiO2 supplementation to the Cr(VI) strained plants minimized PC3 production which is a rare report so far. Conclusively, gTiO2 NPs have been identified to be promising nano-based nutrition resource for farming applications., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
424. Biotechnological approaches for the production of camptothecin.
- Author
-
Banadka A, Narasimha SW, Dandin VS, Naik PM, Vennapusa AR, Melmaiee K, Vemanna RS, Al-Khayri JM, Thiruvengadam M, and Nagella P
- Subjects
- Antineoplastic Agents, Phytogenic biosynthesis, Humans, Camptothecin biosynthesis, Biotechnology methods, Endophytes metabolism, Endophytes genetics, Camptotheca metabolism
- Abstract
Camptothecin (CPT), an indole alkaloid popular for its anticancer property, is considered the third most promising drug after taxol and famous alkaloids from Vinca for the treatment of cancer in humans. Camptothecin was first identified in Camptotheca acuminata followed by several other plant species and endophytic fungi. Increased harvesting driven by rising global demand is depleting the availability of elite plant genotypes, such as Camptotheca acuminata and Nothapodytes nimmoniana, crucial for producing alkaloids used in treating diseases like cancer. Conservation of these genotypes for the future is imperative. Therefore, research on different plant tissue culture techniques such as cell suspension culture, hairy roots, adventitious root culture, elicitation strategies, and endophytic fungi has been adopted for the production of CPT to meet the increasing demand without affecting the source plant's existence. Currently, another strategy to increase camptothecin yield by genetic manipulation is underway. The present review discusses the plants and endophytes that are employed for camptothecin production and throws light on the plant tissue culture techniques for the regeneration of plants, callus culture, and selection of cell lines for the highest camptothecin production. The review further explains the simple, accurate, and cost-effective extraction and quantification methods. There is enormous potential for the sustainable production of CPT which could be met by culturing of suitable endophytes or plant cell or organ culture in a bioreactor scale production. Also, different gene editing tools provide opportunities for engineering the biosynthetic pathway of CPT, and the overall CPT production can be improved . KEY POINTS: • Camptothecin is a naturally occurring alkaloid with potent anticancer properties, primarily known for its ability to inhibit DNA topoisomerase I. • Plants and endophytes offer a potential approach for camptothecin production. • Biotechnology approaches like plant tissue culture techniques enhanced camptothecin production., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
425. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: targeting insights into molecular signaling pathways.
- Author
-
Islam MR, Rauf A, Alash S, Fakir MNH, Thufa GK, Sowa MS, Mukherjee D, Kumar H, Hussain MS, Aljohani ASM, Imran M, Al Abdulmonem W, Thiruvengadam R, and Thiruvengadam M
- Subjects
- Animals, Humans, Antineoplastic Agents, Phytogenic pharmacology, Antineoplastic Agents, Phytogenic therapeutic use, Carcinoma, Hepatocellular prevention & control, Carcinoma, Hepatocellular drug therapy, Carcinoma, Hepatocellular metabolism, Dietary Supplements, Phytochemicals pharmacology, Phytochemicals therapeutic use, Liver Neoplasms prevention & control, Liver Neoplasms drug therapy, Liver Neoplasms metabolism, Signal Transduction drug effects
- Abstract
Primary liver cancer is a type of cancer that develops in the liver. Hepatocellular carcinoma is a primary liver cancer that usually affects adults. Liver cancer is a fatal global condition that affects millions of people worldwide. Despite advances in technology, the mortality rate remains alarming. There is growing interest in researching alternative medicines to prevent or reduce the effects of liver cancer. Recent studies have shown growing interest in herbal products, nutraceuticals, and Chinese medicines as potential treatments for liver cancer. These substances contain unique bioactive compounds with anticancer properties. The causes of liver cancer and potential treatments are discussed in this review. This study reviews natural compounds, such as curcumin, resveratrol, green tea catechins, grape seed extracts, vitamin D, and selenium. Preclinical and clinical studies have shown that these medications reduce the risk of liver cancer through their antiviral, anti-inflammatory, antioxidant, anti-angiogenic, and antimetastatic properties. This article discusses the therapeutic properties of natural products, nutraceuticals, and Chinese compounds for the prevention and treatment of liver cancer., (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
426. Multifunctional Nanocarriers for Alzheimer's Disease: Befriending the Barriers.
- Author
-
Ansari MA, Tripathi T, Venkidasamy B, Monziani A, Rajakumar G, Alomary MN, Alyahya SA, Onimus O, D'souza N, Barkat MA, Al-Suhaimi EA, Samynathan R, and Thiruvengadam M
- Subjects
- Humans, Animals, Drug Delivery Systems methods, Blood-Brain Barrier metabolism, Blood-Brain Barrier drug effects, Nanoparticles chemistry, Multifunctional Nanoparticles chemistry, Alzheimer Disease drug therapy, Drug Carriers chemistry
- Abstract
Neurodegenerative diseases (NDDs) have been increasing in incidence in recent years and are now widespread worldwide. Neuronal death is defined as the progressive loss of neuronal structure or function which is closely associated with NDDs and represents the intrinsic features of such disorders. Amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's, Parkinson's, and Huntington's diseases (AD, PD, and HD, respectively) are considered neurodegenerative diseases that affect a large number of people worldwide. Despite the testing of various drugs, there is currently no available therapy that can remedy or effectively slow the progression of these diseases. Nanomedicine has the potential to revolutionize drug delivery for the management of NDDs. The use of nanoparticles (NPs) has recently been developed to improve drug delivery efficiency and is currently subjected to extensive studies. Nanoengineered particles, known as nanodrugs, can cross the blood-brain barrier while also being less invasive compared to the most treatment strategies in use. Polymeric, magnetic, carbonic, and inorganic NPs are examples of NPs that have been developed to improve drug delivery efficiency. Primary research studies using NPs to cure AD are promising, but thorough research is needed to introduce these approaches to clinical use. In the present review, we discussed the role of metal-based NPs, polymeric nanogels, nanocarrier systems such as liposomes, solid lipid NPs, polymeric NPs, exosomes, quantum dots, dendrimers, polymersomes, carbon nanotubes, and nanofibers and surfactant-based systems for the therapy of neurodegenerative diseases. In addition, we highlighted nanoformulations such as N-butyl cyanoacrylate, poly(butyl cyanoacrylate), D-penicillamine, citrate-coated peptide, magnetic iron oxide, chitosan (CS), lipoprotein, ceria, silica, metallic nanoparticles, cholinesterase inhibitors, an acetylcholinesterase inhibitors, metal chelators, anti-amyloid, protein, and peptide-loaded NPs for the treatment of AD., (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
427. Botany, traditional usages, phytochemistry, pharmacology, and toxicology of Guilandina bonduc L.: a systematic review.
- Author
-
Srinivasan P, Karunanithi K, Muniappan A, Singamoorthy A, Kadaikunnan S, Narayanan SP, Thiruvengadam M, and Nagamuthu P
- Subjects
- Animals, Humans, Medicine, Traditional, Plant Extracts pharmacology, Plant Extracts toxicity, Plant Extracts chemistry, Plant Extracts therapeutic use, Phytotherapy, Ethnopharmacology, Phytochemicals pharmacology, Phytochemicals toxicity, Phytochemicals isolation & purification, Phytochemicals chemistry, Phytochemicals therapeutic use
- Abstract
Guilandina bonduc L. is popularly known as a fever nut that grows widely in evergreen forests and moist deciduous forests with a pantropical distribution. The plant is highly therapeutic in various systems of medicine, including Ayurveda, Siddha, and homeopathy. The purpose of this review is to analyze the published data on G. bonduc, including traditional uses, taxonomic position, botanical description, phytochemistry, pharmacological properties, and toxicological assessment of its various parts. Phytochemical and pharmacological studies were the main focus of this review. The previously published research on G. bonduc was tracked from scientific databases such as Online Library, Google, Taylor and Francis, PubMed, Research Gate, Scopus, Springer, Wiley, Web of Sciences. Numerous phytochemical, pharmaceutical, and pharmacological studies have been carried out on the various parts of G. bonduc. To date, more than 97 phytochemicals have been isolated from the leaves, roots, stems, stem bark, flowers, twigs, and seeds of this plant. The phytochemicals isolated from the plants are flavonoids, homoisoflavonoids, terpenoids, diterpenoids, steroids, fatty acids, alkanes, acids, phenols, ketones, esters, amides, azides, silanes, and ether groups. This plant has been extensively studied in in vitro and in vivo pharmacological experiments, where it showed analgesic, anti-inflammatory, antioxidant, antiviral, antidiabetic, abortive, anticataleptic, immunomodulatory, and antiestrogenic effects. This comprehensive review revealed that phytochemicals isolated from various parts of G. bonduc have significant therapeutic efficacy, with promising anticancer, antidiabetic, hepatoprotective, antioxidant, and antimicrobial activities. This review provides a good source of information for the development of a drug using modern scientific tools, in view of its underexplored traditional uses. Further studies on preclinical and clinical trials and toxicological studies on the bioactive molecules of G. bonduc to validate its traditional uses are warranted., (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
428. Comprehensive review of the repositioning of non-oncologic drugs for cancer immunotherapy.
- Author
-
Rauf A, Joshi PB, Olatunde A, Hafeez N, Ahmad Z, Hemeg HA, Aljohani ASM, Al Abdulmonem W, Thiruvengadam M, Viswanathan D, Rajakumar G, and Thiruvengadam R
- Subjects
- Humans, Antineoplastic Agents therapeutic use, Drug Repositioning methods, Neoplasms drug therapy, Neoplasms immunology, Neoplasms therapy, Immunotherapy methods
- Abstract
Drug repositioning or repurposing has gained worldwide attention as a plausible way to search for novel molecules for the treatment of particular diseases or disorders. Drug repurposing essentially refers to uncovering approved or failed compounds for use in various diseases. Cancer is a deadly disease and leading cause of mortality. The search for approved non-oncologic drugs for cancer treatment involved in silico modeling, databases, and literature searches. In this review, we provide a concise account of the existing non-oncologic drug molecules and their therapeutic potential in chemotherapy. The mechanisms and modes of action of the repurposed drugs using computational techniques are also highlighted. Furthermore, we discuss potential targets, critical pathways, and highlight in detail the different challenges pertaining to drug repositioning for cancer immunotherapy., (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
429. Evaluation of oyster mushroom ( Pleurotus ostreatus )-derived anthraquinone on the induction of apoptosis and suppression of MMP-2 and MMP-9 expression in breast cancer cells.
- Author
-
Jayaprakash B, Suresh AR, Thiruvengadam R, Alharbi NS, Kadaikunnan S, Sankaran S, Thiruvengadam M, Senthil R, and Venkidasamy B
- Subjects
- Humans, MCF-7 Cells, Female, Gene Expression Regulation, Neoplastic drug effects, Oxidative Stress drug effects, Breast Neoplasms drug therapy, Breast Neoplasms pathology, Breast Neoplasms genetics, Anthraquinones pharmacology, Matrix Metalloproteinase 9 metabolism, Matrix Metalloproteinase 9 genetics, Apoptosis drug effects, Apoptosis genetics, Matrix Metalloproteinase 2 genetics, Matrix Metalloproteinase 2 metabolism, Pleurotus chemistry
- Abstract
Introduction : Breast cancer results from tissue degradation caused by environmental and genetic factors that affect cells in the body. Matrix metalloproteinases, such as MMP-2 and MMP-9, are considered potential putative markers for tumor diagnosis in clinical validation due to their easy detection in body fluids. In addition, recent reports have suggested multiple roles for MMPs, rather than simply degeneration of the extracellular matrix, which comprises mobilizing growth factors and processing surface molecules. Methods : In this study, the chemotherapeutic effects of anthraquinone (AQ) extracted from edible mushrooms ( Pleurotus ostreatus Jacq. ex Fr.) cells was examined in MCF-7 breast cancer cells. The cytotoxic potential and oxidative stress induced by purified anthraquinone were assessed in MCF-7 cells using MTT and ROS estimation assays. Gelatin Zymography, and DNA fragmentation assays were performed to examine MMP expression and apoptotic induction in the MCF-7 cells treated with AQ. The genes crucial for mutations were examined, and the mutated RNA knockout plausibility was analyzed using the CRISPR spcas9 genome editing software. Results : MCF-7 cells were attenuated in a concentration-dependent manner by the administration of AQ purified from P. ostreatus compared with the standard anticancer drug paclitaxel. AQ supplementation decreased oxidative stress and mitochondrial impairment in MCF-7 cells. Treatment with AQ and AQ with paclitaxel consistently decreased the expression of crucial marker genes such as MMP2 and MMP9 . The mutated genes MMP2 , MMP7 , and MMP9 were assessed and observed to reveal four putative gene knockdown potentials for breast cancer treatment. Conclusions : The synergistic application of AQ and paclitaxel exerted a strong inhibitory effect on the MCF-7 breast cancer cells. Extensive studies are imperative to better understand the action of bioactive mixes on the edible oyster fungus P. ostreatus . The gene knockout potential detected by CRISPR SpCas9 will aid in elite research into anticancer treatments., Competing Interests: Competing Interests: The authors have declared that no competing interest exists., (© The author(s).)
- Published
- 2024
- Full Text
- View/download PDF
430. Effect of Mosquitocidal, histopathological alteration and non target effects of Sigesbeckia orientalis L. on Anopheles stephensi Liston, Culex quinquefasciatus say and Aedes aegypti L.
- Author
-
Ragavendran K, Selvakumaran J, MuthuKanagavel M, Ignacimuthu S, Alharbi NS, Thiruvengadam M, Mutheeswaran S, and Ganesan P
- Subjects
- Animals, Hexanes pharmacology, Sigesbeckia, Ecosystem, Mosquito Vectors, Larva, Anopheles, Aedes, Insecticides pharmacology, Insecticides chemistry, Acetates, Culex
- Abstract
Diseases transmitted by vectors have a significant collision on society and community health, particularly in tropical and subtropical regions, where they can cause large-scale outbreaks shortly after initial transmission. The intent of this investigation was to study the plant extract derived from Sigesbeckia orientalis L. in controlling the immature stages of Anopheles, Culex and Aedes mosquitoes, while also considering its potential toxicity to ecosystems. The immature stages were exposed to different extracts (62.5-500 ppm), and the mortality of larvae and pupae, as well as ovicidal activity, were noted after 24 and 120 h of the experiment. The hexane and ethyl aceate extract of S. orientalis presented 100% ovicidal activity against the eggs of Anopheles, Aedes and Culex at 500 ppm concentration after 5 days of treatment. The hexane and ethylacetate extracts presented strong larvicidal activity with LC
50 values of 215.7, 332.0, 197.4 and 212.6, 694.9 and 201.7 ppm against treated mosquitoes at 24 h, respectively. The same extract also presented promising pupicidal activity. The LC50 values of hexane extract were 219.6, 353.6, 194.2 and LC50 values of ethyl acetate were 257.6, 387.8 and 259.07 ppm against early stage pupae of three vector mosquitoes, respectively. The extracts from S. orientalis had strong inhibitory activity against growth and development of mosquitoes. SI/PSF values showed that the extracts of S. orientalis did not harm Poecilia reticulata, Diplonychus indicus (Water bug), Gambusia affinis and dragon fly nymph at tested concentrations. Furthermore, examinations of histopathology and growth disruption revealed significant damage to the midgut cells in the treated larvae. The formulations utilizing hexane and ethyl acetate extracts exhibited potent activity without posing any toxicity towards non-target organisms. This study clearly indicated that hexane and ethylacetate extracts showed promising results against treated mosquitoes. The present study documents the first report of the extracts from S. orientalis and they can be further assessed to identify compounds for application purposes., Competing Interests: Declaration of competing interest The authors declare that they have no conflict of interest., (Copyright © 2024 Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
431. Antimicrobial activity of probiotic bacteria-mediated cadmium oxide nanoparticles against fish pathogens.
- Author
-
Rajeshkumar S, Jayakodi S, Tharani M, Alharbi NS, and Thiruvengadam M
- Subjects
- Animals, Oxides chemistry, Anti-Bacterial Agents pharmacology, Anti-Bacterial Agents chemistry, Bacteria, Fishes, Nanoparticles chemistry, Metal Nanoparticles chemistry, Cadmium Compounds
- Abstract
The current research was designed to investigate the antibacterial activity of probiotic bacteria mediated cadmium oxide nanoparticles (CdO NPs) on common fish pathogenic bacteria like Serratia marcescens, Aeromonas hydrophila, Vibrio harveyi, and V. parahaemolyticus. CdO NPs were synthesized using probiotic bacteria as follows: Lactobacillus species with different precursor of cadmium sulfate concentrations (5, 10, and 20 mM). The average crystalline sizes of the CdO NPs were determined based on the XRD patterns using the Debye-Scherrer equation for different precursor concentrations. Specifically, sizes of 40, 48, and 67 nm were found at concentrations of 5, 10, and 20 mM, respectively. The antibacterial efficacy of CdO NPs was estimated using a well diffusion assay, which demonstrated the best efficacy of 20 mM CdO NPs against all pathogens. AFM analysis of nanoparticle-treated and untreated biofilms was performed to further validate the antibacterial effect. Antibacterial activity of CdO nanoparticles synthesized at varying concentrations (5, 10, and 20 mM) against fish pathogens (S. marcescens, A. hydrophila, V. harveyi, and V. parahaemolyticus). The results indicated the highest inhibitory effect of 20 mM CdO NPs across all concentrations (30, 60, and 90 μg/mL), demonstrating significant inhibition against S. marcescens. These findings will contribute to the development of novel strategies for combating aquatic diseases and advancing aquaculture health management practices., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
432. Microwave-Assisted Synthesis of Flower-like MnMoO 4 Nanostructures and Their Photocatalytic Performance.
- Author
-
Selvamani M, Kesavan A, Arulraj A, Ramamurthy PC, Rahaman M, Pandiaraj S, Thiruvengadam M, Sacari Sacari EJ, Limache Sandoval EM, and Viswanathan MR
- Abstract
This article describes an affordable method for the synthesis of MnMoO
4 nanoflowers through the microwave synthesis approach. By manipulating the reaction parameters like solvent, pH, microwave power, and irradiation duration along this pathway, various nanostructures can be acquired. The synthesized nanoflowers were analyzed by using a powder X-ray diffractometer (XRD), field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), and UV-vis diffuse reflectance spectroscopy (UV-DRS) to determine their crystalline nature, morphological and functional group, and optical properties, respectively. X-ray photoelectron spectroscopy (XPS) was performed for the examination of elemental composition and chemical states by qualitative and quantitative analysis. The results of the investigations demonstrated that the MnMoO4 nanostructures with good crystallinity and distinct shape were formed successfully. The synthesized MnMoO4 nanoflowers were tested for their efficiency as a photocatalyst in the degradation studies of methylene blue (MB) as model organic contaminants in an aqueous medium under visible light, which showed their photocatalytic activity with a degradation of 85%. Through the band position calculations using the electronegative value of MnMoO4 , the photocatalytic mechanism of the nanostructures was proposed. The results indicated that the effective charge separation, and transfer mechanisms, in addition to the flower-like shape, were responsible for the photocatalytic performance. The stability of the recovered photocatalyst was examined through its recyclability in the degradation of MB. Leveraging MnMoO4 's photocatalytic properties, future studies may focus on scaling up these processes for practical and large-scale environmental remediation.- Published
- 2024
- Full Text
- View/download PDF
433. Antioxidant and antibacterial activities of 5-mercapto(substitutedthio)-4-substituted-1,2,4-triazol based on nalidixic acid: A comprehensive study on its synthesis, characterization, and In silico evaluation.
- Author
-
Mhaidat I, Banidomi S, Wedian F, Badarneh R, Tashtoush H, Almomani W, Al-Mazaideh GM, Alharbi NS, and Thiruvengadam M
- Abstract
This study introduces a series of novel Alkyl thio-1,2,4-triazole ( 4a-p ) and mercapto-1,2,4-triazole ( 3a-d ) compounds derived from nalidixic acid. The synthesis was streamlined, involving interactions between nalidixic acid hydrazide and various isothiocyanates to yield cyclic and alkyl(aryl) sulfide compounds, characterized using 1H NMR, 13C NMR, IR, and elemental analysis. Antioxidant capabilities were quantified through DPPH and ABTS assays, highlighting significant potential, especially for compound 3d , which demonstrated an ABTS IC
50 value of 0.397 μM, on par with ascorbic acid (IC50 = 0.87 μM). Antibacterial efficacy was established through MIC assessments against a broad spectrum of Gram-positive and Gram-negative bacteria, including Candida albicans . Compounds 3b , 4e , 4h , 4j , 4i , 4m , and 4o showed broad-spectrum activity, with 4k and 4m exhibiting pronounced potency against E. coli . Molecular docking studies validated the antibacterial potential, with compounds 4f and 4h showing high binding affinities (docking scores of -9.8 and -9.6 kcal/mol, respectively), indicating robust interactions with the bacterial enzyme targets. These scores underscore the compounds' mechanistic basis for their antibacterial action and support their therapeutic promise. Furthermore, compounds 3b , 4i , and 4m , identified through drug-likeness and toxicity predictions, were highlighted for their favorable profiles, suggesting their suitability for oral antibiotic therapies. This comprehensive study, blending synthetic, in vitro , and in silico approaches, emphasizes the triazole derivatives' potential as future candidates for antibiotic and antioxidant applications, particularly spotlighting compounds 3b , 4i , and 4m due to their promising efficacy and safety profiles., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2024 The Authors.)- Published
- 2024
- Full Text
- View/download PDF
434. Nanotechnology Approaches for the Remediation of Agricultural Polluted Soils.
- Author
-
Dhanapal AR, Thiruvengadam M, Vairavanathan J, Venkidasamy B, Easwaran M, and Ghorbanpour M
- Abstract
Soil pollution from various anthropogenic and natural activities poses a significant threat to the environment and human health. This study explored the sources and types of soil pollution and emphasized the need for innovative remediation approaches. Nanotechnology, including the use of nanoparticles, is a promising approach for remediation. Diverse types of nanomaterials, including nanobiosorbents and nanobiosurfactants, have shown great potential in soil remediation processes. Nanotechnology approaches to soil pollution remediation are multifaceted. Reduction reactions and immobilization techniques demonstrate the versatility of nanomaterials in mitigating soil pollution. Nanomicrobial-based bioremediation further enhances the efficiency of pollutant degradation in agricultural soils. A literature-based screening was conducted using different search engines, including PubMed, Web of Science, and Google Scholar, from 2010 to 2023. Keywords such as "soil pollution, nanotechnology, nanoremediation, heavy metal remediation, soil remediation" and combinations of these were used. The remediation of heavy metals using nanotechnology has demonstrated promising results and offers an eco-friendly and sustainable solution to address this critical issue. Nanobioremediation is a robust strategy for combatting organic contamination in soils, including pesticides and herbicides. The use of nanophytoremediation, in which nanomaterials assist plants in extracting and detoxifying pollutants, represents a cutting-edge and environmentally friendly approach for tackling soil pollution., Competing Interests: The authors declare no competing financial interest., (© 2024 The Authors. Published by American Chemical Society.)
- Published
- 2024
- Full Text
- View/download PDF
435. Chemical composition and mosquitocidal properties of essential oil from Indian indigenous plants Ocimum tenuiflorum L. and Ocimum americanum L. against three vector mosquitoes.
- Author
-
Ragavendran K, Selvakumaran J, Muthukanagavel M, Alharbi NS, Thiruvengadam M, Mutheeswaran S, Ignacimuthu S, and Ganesan P
- Subjects
- Animals, Humans, Ocimum sanctum, Mosquito Vectors, Larva, Plant Extracts chemistry, Plant Leaves chemistry, Oils, Volatile pharmacology, Oils, Volatile analysis, Ocimum chemistry, Odonata, Insecticides analysis, Culex, Aedes, Anopheles
- Abstract
Mosquitoes stand out as the most perilous and impactful vectors on a global scale, transmitting a multitude of infectious diseases to both humans and other animals. The primary objective of the current research was to assess the effectiveness of EOs from Ocimum tenuiflorum L. and Ocimum americanum L. in controlling Anopheles stephensi Liston. Culex quinquefasciatus Say and Aedes aegypti L. mosquitoes. The larvae, pupae and eggs of the mosquitoes were exposed to four different concentrations (6.25-50 ppm). The tested EOs resulted in >99-100 % mortality at 120 h for the eggs of all examined mosquito species. It also showed robust larvicidal and pupicidal activity with LC
50 and LC90 values of 17-39, 23-60 ppm and 46-220, and 73-412 ppm against Aedes, Culex and Anopheles mosquito species, respectively, at 24 h of treatment. The Suitability Index or Predator Safety Factor demonstrated that the EOs extracted from O. tenuiflorum L. and O. americanum L. did not cause harm to P. reticulata, D. indicus (water bug), G. affinis and nymph (dragonfly). GC-MS analysis identified the major probable constituents of the oil, including Phenol, 2-Methoxy-4-(1-Propenyl)- (28.29 %); 1-Methyl-3-(1'-Methylcyclopropyl) Cyclopentene (46.46 %); (E,E,E)-3,7,11,15-Tetramethylhexadeca-1,3,6,10,14-Pentaene (18.91 %) and 1,3-Isobenzofurandione, 3a,4,7,7a-Tetrahydro-4,7-Dimethyl (33.02 %). These constituents may play a significant role in the mosquitocidal activity of the oil. The same results were identified in the formulation prepared from the EOs. This marks the first report confirming the successful utilization of EOs derived from O. tenuiflorum L. and O. americanum L. in mosquito population control initiatives., Competing Interests: Declaration of competing interest The authors declare no conflict of interest., (Copyright © 2024 Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
436. A clinical study and future prospects for bioactive compounds and semi-synthetic molecules in the therapies for Huntington's disease.
- Author
-
Islam MR, Jony MH, Thufa GK, Akash S, Dhar PS, Rahman MM, Afroz T, Ahmed M, Hemeg HA, Rauf A, Thiruvengadam M, and Venkidasamy B
- Subjects
- Rats, Animals, Rats, Wistar, Acetylcholinesterase, Antioxidants pharmacology, Antioxidants therapeutic use, Nitro Compounds pharmacology, Propionates pharmacology, Propionates therapeutic use, Disease Models, Animal, Huntington Disease metabolism, Biological Products therapeutic use, Neuroprotective Agents pharmacology, Neuroprotective Agents therapeutic use
- Abstract
A neurodegenerative disorder (ND) refers to Huntington's disease (HD) which affects memory loss, weight loss, and movement dysfunctions such as chorea and dystonia. In the striatum and brain, HD most typically impacts medium-spiny neurons. Molecular genetics, excitotoxicity, oxidative stress (OS), mitochondrial, and metabolic dysfunction are a few of the theories advanced to explicit the pathophysiology of neuronal damage and cell death. Numerous in-depth studies of the literature have supported the therapeutic advantages of natural products in HD experimental models and other treatment approaches. This article briefly discusses the neuroprotective impacts of natural compounds against HD models. The ability of the discovered natural compounds to suppress HD was tested using either in vitro or in vivo models. Many bioactive compounds considerably lessened the memory loss and motor coordination brought on by 3-nitropropionic acid (3-NP). Reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and enhanced mitochondrial energy generation have profoundly decreased the biochemical change. It is significant since histology showed that therapy with particular natural compounds lessened damage to the striatum caused by 3-NP. Moreover, natural products displayed varying degrees of neuroprotection in preclinical HD studies because of their antioxidant and anti-inflammatory properties, maintenance of mitochondrial function, activation of autophagy, and inhibition of apoptosis. This study highlighted about the importance of bioactive compounds and their semi-synthetic molecules in the treatment and prevention of HD., (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
437. Anti-diabetic drug discovery using the bioactive compounds of Momordica charantia by molecular docking and molecular dynamics analysis.
- Author
-
Choudhury AA, Arumugam M, Ponnusamy N, Sivaraman D, Sertsemariam W, Thiruvengadam M, Pandiaraj S, Rahaman M, and Devi Rajeswari V
- Abstract
Diabetes mellitus (DM) is a multifactorial life-threatening endocrine disease characterized by abnormalities in glucose metabolism. It is a chronic metabolic disease that involves multiple enzymes such as α-amylase and α-glucosidases. Inhibition of these enzymes has been identified as a promising method for managing diabetes, and researchers are currently focusing on discovering novel α-amylase and α-glucosidase inhibitors for diabetes therapy. Hence, we have selected 12 bioactive compounds from the Momordica charantia (MC) plant and performed a virtual screening and molecular dynamics investigation to identify natural inhibitors of α-amylase and α-glucosidases. Our in silico result revealed that phytocompound Rutin showed the highest binding affinity against α-amylase (1HNY) enzymes at (-11.68 kcal/mol), followed by Karaviloside II (-9.39), Momordicoside F (-9.19), Campesterol (-9.11. While docking against α-glucosidases (4J5T), Rutin again showed the greatest binding affinity (-11.93 kcal/mol), followed by Momordicine (-9.89), and Campesterol (-8.99). Molecular dynamics (MD) simulation research is currently the gold standard for drug design and discovery. Consequently, we conducted simulations of 100 nanoseconds (ns) to assess the stability of protein-ligand complexes based on parameters like RMSD, RMSF, RG, PCA, and FEL. The significance of our findings indicates that rutin from MC might serve as an effective natural therapeutic agent for diabetes management due to its strongest binding affinities with α-amylase and α-glucosidase enzymes. Further research in animals and humans is essential to validate the efficacy of these drug molecules.Communicated by Ramaswamy H. Sarma.
- Published
- 2024
- Full Text
- View/download PDF
438. Impact of nanopollution on plant growth, photosynthesis, toxicity, and metabolism in the agricultural sector: An updated review.
- Author
-
Thiruvengadam M, Chi HY, and Kim SH
- Subjects
- Plant Development, Photosynthesis, Agriculture, Plants, Soil, Ecosystem, Nanoparticles toxicity
- Abstract
Nanotechnology provides distinct benefits to numerous industrial and commercial fields, and has developed into a discipline of intense interest to researchers. Nanoparticles (NPs) have risen to prominence in modern agriculture due to their use in agrochemicals, nanofertilizers, and nanoremediation. However, their potential negative impacts on soil and water ecosystems, as well as plant growth and physiology, have caused concern for researchers and policymakers. Concerns have been expressed regarding the ecological consequences and toxicity effects associated with nanoparticles as a result of their increased production and usage. Moreover, the accumulation of nanoparticles in the environment poses a risk, not only because of the possibility of plant damage but also because nanoparticles may infiltrate the food chain. In this review, we have documented the beneficial and detrimental effects of NPs on seed germination, shoot and root growth, plant biomass, and nutrient assimilation. Nanoparticles exert toxic effects by inducing ROS generation and stimulating cytotoxic and genotoxic effects, thereby leading to cell death in several plant species. We have provided possible mechanisms by which nanoparticles induce toxicity in plants. In addition to the toxic effects of NPs, we highlighted the importance of nanomaterials in the agricultural sector. Thus, understanding the structure, size, and concentration of nanoparticles that will improve plant growth or induce plant cell death is essential. This updated review reveals the multifaceted connection between nanoparticles, soil and water pollution, and plant biology in the context of agriculture., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Masson SAS. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
439. Fungal derived herbicidal metabolite loaded starch-chitosan-gum acacia-agar based bio composite: Preparation, characterization, herbicidal activity, release profile and biocompatibility.
- Author
-
Namasivayam SKR, Pandian UK, Samrat K, Arvind Bharani RS, John A, Kavisri M, Kadaikunnan S, Thiruvengadam M, and Moovendhan M
- Subjects
- Starch chemistry, Gum Arabic, Agar, Polymers, Water, Soil, Chitosan chemistry, Herbicides
- Abstract
Biocomposites based on starch- gum acacia- agar, chitosan- starch- agar, starch- poly vinyl alcohol- agar were synthesized by simple, green route principles and the various characterization techniques like fourier infrared spectroscopy, SEM revealed the highly stable micro dimenstional that specially interacted with functional groups of polymers -herbicidal metabolites. Respective biocomposite was prepared by mixing equal volume of the selected polymer (1;1;1 ratio) with known concentration (100 mg of in distilled water followed by the addition of reconstituted herbicidal metabolites (100 mg or 0.1 g). Though all the biocomposites were capable of inducing herbicidal effect, notable impact was recorded in chitosan- starch- gum acacia treatment. In this case, the necrotic lesions were initiated at the early incubation period (6 h), progressively developing into dark brownish black lesions with 30.0 mm diameter. Release profile of the metabolites from the respective composite was also under in vitro and soil assay. Release profile study under in vitro and soil condition showed the sustained or controlled manner in distilled water and ethyl acetate treatment. No sign of toxic effect on the soil, parameters plant growth, rhizobacteria and peripheral blood cells clearly revealed the best biocompatibility of the presently proposed biocomposite., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
440. Comprehensive study on the differential extraction and comparison of bioactive health potential of the Broccoli ( Brassica oleracea ).
- Author
-
Uvaraj D, Alharbi NS, Kadaikunnan S, Thiruvengadam M, and Venkidasamy B
- Subjects
- Antioxidants chemistry, Methanol chemistry, Plant Extracts pharmacology, Plant Extracts chemistry, Water, Acetonitriles, Anti-Inflammatory Agents, Brassica chemistry
- Abstract
Introduction: Broccoli is a cruciferous vegetable that has been shown to have numerous potential therapeutic benefits because of its bioactive compounds. Methods: In this study, we compared the bioactive efficacy of cooked and uncooked (fresh) stems and florets of broccoli extracted with three different solvents: acetonitrile, methanol, and aqueous extracts. The extraction yield and antioxidant and antibacterial potential of different broccoli extracts were examined. Results: Fresh and boiled floret stem extracts increased the extraction yield. The extraction yields were higher for the methanol and acetonitrile extracts than for the aqueous extracts. The antioxidant efficacy of the different extracts was studied using ABTS, DPPH, and metal ion reduction assays. The acetonitrile and aqueous extracts exhibited higher antioxidant activities than the methanolic extracts in different antioxidant assays. In addition, increased antioxidant activity was observed in fresh florets and boiled broccoli stems. TPC and TFC contents were higher in the methanolic extracts than in the aqueous extracts. Similar to antioxidant activities, anti-inflammatory activities were found to be higher in the acetonitrile and aqueous extracts, particularly in boiled stems and fresh florets. Broccoli extracts have been shown to be active against Bacillus subtilis and moderately effective against Pseudomonas aeruginosa and Staphylococcus aureus . Conclusions: Acetonitrile and aqueous extraction of broccoli might be an ideal choice for extraction methods, which show increased extraction yield and antioxidant and anti-inflammatory potentials. Utilization of phytomolecules from natural sources is a promising alternative approach to synthetic drug development., Competing Interests: Competing Interests: The authors have declared that no competing interest exists., (© The author(s).)
- Published
- 2024
- Full Text
- View/download PDF
441. Current Strategies for Overcoming Smoking Addiction: A Major Cause of Oral Cancer.
- Author
-
Govindasamy R, Venkidasamy B, and Thiruvengadam M
- Subjects
- Humans, Smoking adverse effects, Tobacco Smoking, Tobacco Use Disorder, Mouth Neoplasms etiology
- Published
- 2024
- Full Text
- View/download PDF
442. Mosquitocidal Susceptibility and Non-Target Effects of Tricholoma equestre Mushroom (Agaricomycetes) on the Immature Stages of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus.
- Author
-
Muthukanagavel M, Vasanth N, Selvakumaran J, Ragavendran K, Anthonysamy M, Subramanian M, Ignacimuthu S, Alharbi NS, Thiruvengadam M, and Ganesan P
- Subjects
- Animals, Methanol pharmacology, Mosquito Vectors, Plant Extracts chemistry, Larva, Plant Leaves chemistry, Aedes, Anopheles, Odonata, Insecticides pharmacology, Insecticides chemistry, Agaricales, Culex
- Abstract
The worldwide scientific community is well aware that mosquitoes are the sole agents responsible for transmitting various dreadful diseases and critical illnesses caused by vector-borne pathogens. The primary objective of this current research was to evaluate the effectiveness of methanol extract from Tricholoma equestre mushroom in controlling the early life stages of Culex quinquefasciatus Say, Anopheles stephensi Liston, and Aedes aegypti (Linnaeus in Hasselquist) mosquitoes. The larvae, pupae and eggs of these mosquitoes were exposed to four different concentrations (62.5 to 500 ppm). After 120 h of treatment, the methanol extract of T. equestre exhibited ovicidal activity ranging from 66% to 80% against the eggs of the treated mosquitoes. It also demonstrated promising larvicidal and pupicidal activity with LC50 values of 216-300 and 230-309 ppm against the early life stages of all three mosquito species. Extensive toxicity studies revealed that the methanol extract from T. equestre had no harmful effects on non-target organisms. The suitability index (SI) or predator safety factor (PSF) indicated that the methanol extract did not harm Poecilia reticulata Peters 1859, (predatory fish), Gambusia affinis S. F. Baird & Girard 1853, dragonfly nymph and Diplonychus indicus Venkatesan & Rao 1871 (water-bug). Gas chromatography-mass spectrometry (GCMS) analysis identified key compounds, including 3-butenenitrile, 2-methyl-(25.319%); 1-butanol, 2-nitro-(18.87%) and oxalic acid, heptyl propyl ester (21.82%) which may be responsible for the observed activity. Furthermore, the formulation based on the methanol extract demonstrated similar effectiveness against all treated mosquitoes at the laboratory level and was found to be non-toxic to mosquito predators. This groundbreaking research represents the first confirmation that methanol extract from T. equestre could be effectively employed in preventing mosquito-borne diseases through mosquito population control programs.
- Published
- 2024
- Full Text
- View/download PDF
443. Short-chain fatty acid: An updated review on signaling, metabolism, and therapeutic effects.
- Author
-
Rekha K, Venkidasamy B, Samynathan R, Nagella P, Rebezov M, Khayrullin M, Ponomarev E, Bouyahya A, Sarkar T, Shariati MA, Thiruvengadam M, and Simal-Gandara J
- Subjects
- Fatty Acids, Volatile metabolism, Cytokines, Immune System metabolism, Signal Transduction, Receptors, G-Protein-Coupled metabolism
- Abstract
Fatty acids are good energy sources (9 kcal per gram) that aerobic tissues can use except for the brain (glucose is an alternative source). Apart from the energy source, fatty acids are necessary for cell signaling, learning-related memory, modulating gene expression, and functioning as cytokine precursors. Short-chain fatty acids (SCFAs) are saturated fatty acids arranged as a straight chain consisting minimum of 6 carbon atoms. SCFAs possess various beneficial effects like improving metabolic function, inhibiting insulin resistance, and ameliorating immune dysfunction. In this review, we discussed the biogenesis, absorption, and transport of SCFA. SCFAs can act as signaling molecules by stimulating G protein-coupled receptors (GPCRs) and suppressing histone deacetylases (HDACs). The role of SCFA on glucose metabolism, fatty acid metabolism, and its effect on the immune system is also reviewed with updated details. SCFA possess anticancer, anti-diabetic, and hepatoprotective effects. Additionally, the association of protective effects of SCFA against brain-related diseases, kidney diseases, cardiovascular damage, and inflammatory bowel diseases were also reviewed. Nanotherapy is a branch of nanotechnology that employs nanoparticles at the nanoscale level to treat various ailments with enhanced drug stability, solubility, and minimal side effects. The SCFA functions as drug carriers, and nanoparticles were also discussed. Still, much research was not focused on this area. SCFA functions in host gene expression through inhibition of HDAC inhibition. However, the study has to be focused on the molecular mechanism of SCFA against various diseases that still need to be investigated.
- Published
- 2024
- Full Text
- View/download PDF
444. Targeted therapies of curcumin focus on its therapeutic benefits in cancers and human health: Molecular signaling pathway-based approaches and future perspectives.
- Author
-
Islam MR, Rauf A, Akash S, Trisha SI, Nasim AH, Akter M, Dhar PS, Ogaly HA, Hemeg HA, Wilairatana P, and Thiruvengadam M
- Subjects
- Humans, Anti-Inflammatory Agents therapeutic use, Signal Transduction, Inflammation drug therapy, Curcumin pharmacology, Curcumin therapeutic use, Curcumin chemistry, Neoplasms drug therapy
- Abstract
The curry powder spices turmeric (Curcuma longa L.), which contains curcumin (diferuloylmethane), an orange-yellow chemical. Polyphenols are the most commonly used sources of curcumin. It combats oxidative stress and inflammation in diseases, such as hyperlipidemia, metabolic syndrome, arthritis, and depression. Most of these benefits are due to their anti-inflammatory and antioxidant properties. Curcumin consumption leads to decreased bioavailability, resulting in limited absorption, quick metabolism, and quick excretion, which hinders health improvement. Numerous factors can increase its bioavailability. Piperine enhances bioavailability when combined with curcumin in a complex. When combined with other enhancing agents, curcumin has a wide spectrum of health benefits. This review evaluates the therapeutic potential of curcumin with a specific emphasis on its approach based on molecular signaling pathways. This study investigated its influence on the progression of cancer, inflammation, and many health-related mechanisms, such as cell proliferation, apoptosis, and metastasis. Curcumin has a significant potential for the prevention and treatment of various diseases. Curcumin modulates several biochemical pathways and targets involved in cancer growth. Despite its limited tissue accumulation and bioavailability when administered orally, curcumin has proven useful. This review provides an in-depth analysis of curcumin's therapeutic applications, its molecular signaling pathway-based approach, and its potential for precision medicine in cancer and human health., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Authors. Published by Elsevier Masson SAS.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
445. In vivo biological screening of extract and bioactive compound from Ficus benghalensis L. and their in silico molecular docking analysis.
- Author
-
Abu-Izneid T, Rauf A, Naz S, Ibrahim M, Muhammad N, Wadood A, Ajmal A, Hemeg HA, Fahad S, Thiruvengadam M, and Venkidasamy B
- Subjects
- Animals, Mice, Male, Neuromuscular Agents pharmacology, Ficus chemistry, Plant Extracts pharmacology, Plant Extracts chemistry, Molecular Docking Simulation, Analgesics pharmacology, Hypnotics and Sedatives pharmacology
- Abstract
Background: Ficus benghalensis has been used by local health care practitioners to treat pain, inflammation, rheumatism, and other health issues., Objective: In this study, the crude extract and diverse fractions, along with the isolated compound of F. benghalensis were examined for their roles as muscle relaxants, analgesics, and sedatives., Methods: The extract and isolated compound 1 were screened for muscle-relaxant, analgesic, and sedative actions. The acetic acid-mediated writhing model was utilized for analgesic assessment, the muscle relaxant potential was quantified through traction and inclined plan tests, and the open field test was applied for sedative effects., Results: The extract/fractions (25, 50, and 100 mg/kg) and isolated compounds (2.5, 5, 10, and 20 mg/kg) were tested at various doses. A profound (p< 0.001) reduce in the acetic acid-mediated writhing model was observed against carpachromene (64.44%), followed by ethyl acetate (60.67%) and methanol (58.42%) fractions. A marked (p< 0.001) muscle relaxant activity was noticed against the isolated compound (71.09%), followed by ethyl acetate (66.98%) and methanol (67.10%) fractions. Regarding the sedative effect, a significant action was noted against the isolated compound (71.09%), followed by ethyl acetate (66.98%) and methanol (67.10%) fractions. Furthermore, the binding modes of the isolated compounds were explored using molecular docking. The molecular docking study revealed that the isolated compound possessed good binding affinity for COX2 and GABA. Our isolated compound may possess inhibitory activity against COX2 and GABA receptors., Conclusion: The extract and isolated compounds of Ficus benghalensis can be used as analgesics, muscle relaxants, and sedatives. However, detailed molecular and functional analyses are essential to ascertain their function as muscle relaxants, analgesics, and sedatives.
- Published
- 2024
- Full Text
- View/download PDF
446. Ribosome Biogenesis and Cancer: Insights into NOB1 and PNO1 Mechanisms.
- Author
-
Ragunath M, Shen A, Wei L, Peng J, and Thiruvengadam M
- Subjects
- Humans, Nuclear Proteins metabolism, Nuclear Proteins genetics, Animals, Neoplasms metabolism, Neoplasms pathology, Neoplasms genetics, RNA-Binding Proteins metabolism, RNA-Binding Proteins genetics, Ribosomes metabolism, Ribosomes genetics
- Abstract
Post-transcriptional modifications (PTMs) are pivotal in the regulation of gene expression, and pseudouridylation is emerging as a critical player. This modification, facilitated by enzymes such as NOB1 (PNO1), is integral to ribosome biogenesis. PNO1, in collaboration with the NIN1/RPN12 binding protein 1 homolog (NOB1), is vital for the maturation of ribosomes, transitioning 20S pre-rRNA into functional 18S rRNA. Recent studies have highlighted PNO1's potential involvement in cancer progression; however, its underlying mechanisms remain unclear. Relentless growth characterizing cancer underscores the burgeoning significance of epitranscriptomic modifications, including pseudouridylation, in oncogenesis. Given PNO1's emerging role, it is imperative to delineate its contribution to cancer development to identify novel therapeutic interventions. This review summarizes the current literature regarding the role of PNO1 in cancer progression and its molecular underpinnings in oncogenesis. Overexpression of PNO1 was associated with unfavorable prognosis and increased tumor malignancy. At the molecular level, PNO1 facilitates cancer progression by modulating mRNA stability, alternative splicing, and translation efficiency. Its role in pseudouridylation of oncogenic and tumor-suppressor transcripts further underscores its significance in cancer biology. Although disruption of ribosome biogenesis is known to precipitate oncogenesis, the precise mechanisms by which these alterations contribute to cancer remain unclear. This review elucidates the intricate process of ribosomal small subunit maturation, highlighting the roles of crucial ribosomal proteins (RPs) and RNA-binding proteins (RBPs) as well as the positioning and function of NOB1 and PNO1 within the 40S subunit. The involvement of these components in the maturation of the small subunit (SSU) and their significance in the context of cancer therapeutics has been thoroughly explored. PNO1's burgeoning significance in oncology makes it a potential target for cancer therapies. Strategies aimed at modulating PNO1-mediated pseudouridylation may provide new avenues for cancer treatment. However, further research is essential to unravel the complete spectrum of PNO1 mechanisms in cancer and harness this knowledge for the development of targeted and more efficacious anticancer therapies., (Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.)
- Published
- 2024
- Full Text
- View/download PDF
447. A comprehensive review of beetroot ( Beta vulgaris L.) bioactive components in the food and pharmaceutical industries.
- Author
-
Thiruvengadam M, Chung IM, Samynathan R, Chandar SRH, Venkidasamy B, Sarkar T, Rebezov M, Gorelik O, Shariati MA, and Simal-Gandara J
- Subjects
- Humans, Anti-Infective Agents pharmacology, Antioxidants pharmacology, Antiviral Agents pharmacology, Drug Industry, Molecular Docking Simulation, Vegetables, Beta vulgaris chemistry, Phytochemicals pharmacology
- Abstract
Beetroot is rich in various bioactive phytochemicals, which are beneficial for human health and exert protective effects against several disease conditions like cancer, atherosclerosis, etc. Beetroot has various therapeutic applications, including antioxidant, antibacterial, antiviral, and analgesic functions. Besides the pharmacological effects, food industries are trying to preserve beetroots or their phytochemicals using various food preservation methods, including drying and freezing, to preserve their antioxidant capacity. Beetroot is a functional food due to valuable active components such as minerals, amino acids, phenolic acid, flavonoid, betaxanthin, and betacyanin. Due to its stability, nontoxic and non-carcinogenic and nonpoisonous capabilities, beetroot has been used as an additive or preservative in food processing. Beetroot and its bioactive compounds are well reported to possess antioxidant, anti-inflammatory, antiapoptotic, antimicrobial, antiviral, etc. In this review, we provided updated details on (i) food processing, preservation and colorant methods using beetroot and its phytochemicals, (ii) synthesis and development of several nanoparticles using beetroot and its bioactive compounds against various diseases, (iii) the role of beetroot and its phytochemicals under disease conditions with molecular mechanisms. We have also discussed the role of other phytochemicals in beetroot and their health benefits. Recent technologies in food processing are also updated. We also addressed on molecular docking-assisted biological activity and screening for bioactive chemicals. Additionally, the role of betalain from different sources and its therapeutic effects have been listed. To the best of our knowledge, little or no work has been carried out on the impact of beetroot and its nanoformulation strategies for phytocompounds on antimicrobial, antiviral effects, etc. Moreover, epigenetic alterations caused by phytocompounds of beetroot under several diseases were not reported much. Thus, extensive research must be carried out to understand the molecular effects of beetroot in the near future.
- Published
- 2024
- Full Text
- View/download PDF
448. Synthesis, Characterization and Potential Antimicrobial Activity of Selenium Nanoparticles Stabilized with Cetyltrimethylammonium Chloride.
- Author
-
Blinova A, Blinov A, Kravtsov A, Nagdalian A, Rekhman Z, Gvozdenko A, Kolodkin M, Filippov D, Askerova A, Golik A, Serov A, Shariati MA, Alharbi NS, Kadaikunnan S, and Thiruvengadam M
- Abstract
Selenium nanoparticles (Se NPs) have a number of unique properties that determine the use of the resulting nanomaterials in various fields. The focus of this paper is the stabilization of Se NPs with cetyltrimethylammonium chloride (CTAC). Se NPs were obtained by chemical reduction in an aqueous medium. The influence of the concentration of precursors and synthesis conditions on the size of Se NPs and the process of micelle formation was established. Transmission electron microscopy was used to study the morphology of Se NPs. The influence of the pH of the medium and the concentration of ions in the sol on the stability of Se micelles was studied. According to the results of this study, the concentration of positively charged ions has a greater effect on the particle size in the positive Se NPs sol than in the negative Se NPs sol. The potential antibacterial and fungicidal properties of the samples were studied on Escherichia coli , Micrococcus luteus and Mucor . Concentrations of Se NPs stabilized with CTAC with potential bactericidal and fungicidal effects were discovered. Considering the revealed potential antimicrobial activity, the synthesized Se NPs-CTAC molecular complex can be further studied and applied in the development of veterinary drugs, pharmaceuticals, and cosmetics.
- Published
- 2023
- Full Text
- View/download PDF
449. Pharmacologically active herbal remedies against atherosclerosis, characterization and DoE based marker quantification by densitometry, and cell based assays on THP-1 cell lines.
- Author
-
Sireesha R, Krishnan M, Sadiq M, Ramanujam Ganesh M, Kamaraj C, Alharbi NS, and Thiruvengadam M
- Abstract
Atherosclerosis is a complex condition that develops at varying rates in multiple configurations and blood vessels. The primary cause of morbidity and mortality worldwide, particularly in the industrialized nations, continues to be atherosclerosis. Ayurveda, Siddha, and Unani systems of medicine, among other traditional medical systems, utilize polyherbal compositions. The treatment of atherosclerosis has been improved with a novel multibotanical combination. In this study, we sought to formulate, characterize, and standardize a polyherbal formulation based on design of experiments (DoE), densitometric studies and to predict for antioxidant activity using molecular docking analysis based on LC- MS identified phytomarkers. In addition we have assessed its cell viability by MTT assay along with Ao/EtBr staining technique and intracellular ROS assay using THP-1 cell lines. Reported findings showed that the HPTLC based quantified components of selected multiherbals has the ability to treat for atherosclerosis. This document could be used to quickly authenticate the formulation as the method optimized was based on CCD design which shows desirability of 0.962 and 0.839. Cell based assays scientifically proves that the formulation was not toxic based on MTT assay along with AO/EtBr staining technique and has excellent antioxidant activities based on intracellular ROS assay using THP-1 cell lines. The observed findings would be crucial for future clinical aspects since the bioactive molecules contained in the extracts may have anticipated effects with other compounds and show a superior therapeutic potential. As a result, this study offers standardized and potentially therapeutic information about effective polyherbal formulation for atherosclerosis., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2023 The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
450. Biocompatible nanoscale silica particles fabricated from aminopropyltriethoxysilane functionalized brick ash induced versatile pesticidal activity.
- Author
-
Karthick Raja Namasivayam S, Francis AL, Kavisri M, Alharbi NS, Thiruvengadam M, and Moovendhan M
- Subjects
- Animals, Rabbits, Silicon Dioxide toxicity, Zebrafish, Soil, Pesticides, Nanoparticles toxicity
- Abstract
The present study is aimed to evaluate pesticidal activity and biocompatibility including ecotoxicity of functionalized silica nanoparticles that synthesized by simple, in vitro, green technology principles. Sol-gel method was adopted for the synthesis of silica nanoparticles and was functionalized by Aminopropyltriethoxysilane (APS), characterized and confirmed the uniform, monodispersive, highly stable particles with the size range of 10-200 nm. The synthesized Nano silica was screened against the developmental stages of Spodoptera litura. Pesticidal study revealed that the functionalized nanoparticles were effective against all the life stages of the insect by recording high mortality and the drastic reduction in the larval, pupae, adult emergence, and adult longevity stages. The ecotoxic effect of synthesized nano-silica was tested on soil parameters, growth parameters of Arachis hypogaea, and compatibility with Trichoderma viride. This study revealed there was no toxic effect on soil, growth parameters of Arachis hypogaea, and most significantly the growth of Trichoderma viride was not inhibited. A biocompatibility study was done by using Zebrafish and Rabbit model. The study divulges there was no toxic effect on all the developmental stages of the Embryo. Further, the nanoparticles did not exhibit any dermatotoxicological effect which confirmed no signs and symptoms of inflammation. Nano-silica emerges as a promising eco-friendly and non-toxic substitute for conventional insecticides. Its utilization has the potential to augment both environmental preservation and economic prosperity on a national scale. Furthermore, the integration of silica-based nanoparticles with biocidal agents demonstrates notable biocompatibility and the capacity to hinder bacterial adhesion., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper, (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.