Back to Search Start Over

Antimicrobial activity of probiotic bacteria-mediated cadmium oxide nanoparticles against fish pathogens.

Authors :
Rajeshkumar S
Jayakodi S
Tharani M
Alharbi NS
Thiruvengadam M
Source :
Microbial pathogenesis [Microb Pathog] 2024 Apr; Vol. 189, pp. 106602. Date of Electronic Publication: 2024 Feb 24.
Publication Year :
2024

Abstract

The current research was designed to investigate the antibacterial activity of probiotic bacteria mediated cadmium oxide nanoparticles (CdO NPs) on common fish pathogenic bacteria like Serratia marcescens, Aeromonas hydrophila, Vibrio harveyi, and V. parahaemolyticus. CdO NPs were synthesized using probiotic bacteria as follows: Lactobacillus species with different precursor of cadmium sulfate concentrations (5, 10, and 20 mM). The average crystalline sizes of the CdO NPs were determined based on the XRD patterns using the Debye-Scherrer equation for different precursor concentrations. Specifically, sizes of 40, 48, and 67 nm were found at concentrations of 5, 10, and 20 mM, respectively. The antibacterial efficacy of CdO NPs was estimated using a well diffusion assay, which demonstrated the best efficacy of 20 mM CdO NPs against all pathogens. AFM analysis of nanoparticle-treated and untreated biofilms was performed to further validate the antibacterial effect. Antibacterial activity of CdO nanoparticles synthesized at varying concentrations (5, 10, and 20 mM) against fish pathogens (S. marcescens, A. hydrophila, V. harveyi, and V. parahaemolyticus). The results indicated the highest inhibitory effect of 20 mM CdO NPs across all concentrations (30, 60, and 90 μg/mL), demonstrating significant inhibition against S. marcescens. These findings will contribute to the development of novel strategies for combating aquatic diseases and advancing aquaculture health management practices.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1096-1208
Volume :
189
Database :
MEDLINE
Journal :
Microbial pathogenesis
Publication Type :
Academic Journal
Accession number :
38408546
Full Text :
https://doi.org/10.1016/j.micpath.2024.106602