301. Multifunctional coating of cotton fabric via the assembly of amino-quinone networks with polyamine biomacromolecules and dopamine quinone
- Author
-
Wei Cheng, Wenjing Liu, Ping Wang, Man Zhou, Li Cui, Qiang Wang, and Yuanyuan Yu
- Subjects
Staphylococcus aureus ,Structural Biology ,Dopamine ,Textiles ,Escherichia coli ,Polyamines ,Quinones ,Humans ,General Medicine ,Cotton Fiber ,Molecular Biology ,Biochemistry ,Anti-Bacterial Agents - Abstract
Functional textiles with antibacterial properties and UV protection are essential for human health. However, the process of functional modification of textiles is usually done with the help of chemical cross-linking agents to improve the bonding fastness of functional finishing agents on textiles. The use of chemical cross-linking agents is not eco-friendly enough and is prone to chemical waste. In this study, some highly reactive polyamine biomolecules were combined with dopamine quinone, a super adhesive bionic material, to spontaneously construct amino-quinone networks (AQNs) coatings on the surface of cotton fabrics without the addition of chemical crosslinkers. The amino/quinone compounds (A/Q) self-crosslinking reaction is achieved by Michael addition and Schiff base reaction between the quinone group in dopamine quinone and the amino group in chitosan (CTS), chitooligosaccharide (COS) or ԑ-polylysine (ԑ-PL). The combination of polyamines and dopamine quinone during the cotton finishing process imparts antibacterial and UV protection to cotton fabric. The results showed that the AQNs coating modified fabrics had superb UV protection and antibacterial rates of over 96% against both E. coli and S. aureus. In addition, the AQNs coating modified fabrics had good resistance to washing and mechanical abrasion. This study proposes that self-assembled amino-quinone network multifunctional coatings of dopamine quinone and polyamine biomolecules are of guiding significance for the development of environmentally friendly bio-based materials.
- Published
- 2022