301. Variational Methods for Normal Integration
- Author
-
Jean-François Aujol, Yvain Quéau, Jean-Denis Durou, Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), Real Expression Artificial Life (IRIT-REVA), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - INPT (FRANCE), Institut universitaire de France - IUF (FRANCE), Technische Universität München - TUM (GERMANY), Université Toulouse III - Paul Sabatier - UT3 (FRANCE), Université Toulouse - Jean Jaurès - UT2J (FRANCE), Université Toulouse 1 Capitole - UT1 (FRANCE), Université de Bordeaux (FRANCE), Institut de Recherche en Informatique de Toulouse - IRIT (Toulouse, France), and Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
- Subjects
Statistics and Probability ,FOS: Computer and information sciences ,Discretization ,Gradient field ,Computer science ,Anisotropic diffusion ,Photometric stereo ,Computer Vision and Pattern Recognition (cs.CV) ,Integration ,Computer Science - Computer Vision and Pattern Recognition ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,variational methods ,Boundary (topology) ,Image processing ,integration ,02 engineering and technology ,01 natural sciences ,normal field ,shape-from-shading ,Traitement des images ,Variational methods ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,0202 electrical engineering, electronic engineering, information engineering ,Traitement du signal et de l'image ,0101 mathematics ,ComputingMethodologies_COMPUTERGRAPHICS ,3D-reconstruction ,Applied Mathematics ,3D reconstruction ,photometric stereo ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,Vision par ordinateur et reconnaissance de formes ,Solver ,Condensed Matter Physics ,010101 applied mathematics ,Discontinuity (linguistics) ,Shape-from-shading ,Modeling and Simulation ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,Computer Science::Computer Vision and Pattern Recognition ,020201 artificial intelligence & image processing ,Geometry and Topology ,Computer Vision and Pattern Recognition ,Normal field ,gradient field ,Algorithm - Abstract
International audience; The need for an efficient method of integration of a dense normal field is inspired by several computer vision tasks, such as shape-from-shading, photometric stereo, deflectometry. Inspired by edge-preserving methods from image processing, we study in this paper several variational approaches for normal integration, with a focus on non-rectangular domains, free boundary and depth discontinuities. We first introduce a new discretization for quadratic integration, which is designed to ensure both fast recovery and the ability to handle non-rectangular domains with a free boundary. Yet, with this solver, discontinuous surfaces can be handled only if the scene is first segmented into pieces without discontinuity. Hence, we then discuss several discontinuity-preserving strategies. Those inspired, respectively, by the Mumford-Shah segmentation method and by anisotropic diffusion, are shown to be the most effective for recovering discontinuities.
- Full Text
- View/download PDF