Back to Search Start Over

Variational Methods for Normal Integration

Authors :
Jean-François Aujol
Yvain Quéau
Jean-Denis Durou
Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM)
Real Expression Artificial Life (IRIT-REVA)
Institut de recherche en informatique de Toulouse (IRIT)
Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées
Institut de Mathématiques de Bordeaux (IMB)
Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique - CNRS (FRANCE)
Institut National Polytechnique de Toulouse - INPT (FRANCE)
Institut universitaire de France - IUF (FRANCE)
Technische Universität München - TUM (GERMANY)
Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Université Toulouse - Jean Jaurès - UT2J (FRANCE)
Université Toulouse 1 Capitole - UT1 (FRANCE)
Université de Bordeaux (FRANCE)
Institut de Recherche en Informatique de Toulouse - IRIT (Toulouse, France)
Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Source :
Journal of Mathematical Imaging and Vision, Journal of Mathematical Imaging and Vision, Springer Verlag, 2018, 60 (4), pp.609-632. ⟨10.1007/s10851-017-0777-6⟩

Abstract

International audience; The need for an efficient method of integration of a dense normal field is inspired by several computer vision tasks, such as shape-from-shading, photometric stereo, deflectometry. Inspired by edge-preserving methods from image processing, we study in this paper several variational approaches for normal integration, with a focus on non-rectangular domains, free boundary and depth discontinuities. We first introduce a new discretization for quadratic integration, which is designed to ensure both fast recovery and the ability to handle non-rectangular domains with a free boundary. Yet, with this solver, discontinuous surfaces can be handled only if the scene is first segmented into pieces without discontinuity. Hence, we then discuss several discontinuity-preserving strategies. Those inspired, respectively, by the Mumford-Shah segmentation method and by anisotropic diffusion, are shown to be the most effective for recovering discontinuities.

Details

Language :
English
ISSN :
09249907 and 15737683
Database :
OpenAIRE
Journal :
Journal of Mathematical Imaging and Vision, Journal of Mathematical Imaging and Vision, Springer Verlag, 2018, 60 (4), pp.609-632. ⟨10.1007/s10851-017-0777-6⟩
Accession number :
edsair.doi.dedup.....50c5cce00ba188e97b31424873e34dc1
Full Text :
https://doi.org/10.1007/s10851-017-0777-6⟩