251. Insulin induces proliferation and cardiac differentiation of P19 CL6 cells in a dose-dependent manner.
- Author
-
Li, Wen‐Yan, Song, Yang‐Liu, Xiong, Cheng‐Juan, Lu, Pei‐Qi, Xue, Li‐Xiang, Yao, Chun‐Xia, Wang, Wei‐Ping, Zhang, Shu‐Feng, Zhang, Shan‐Feng, Wei, Qing‐Xia, Zhang, Yan‐Yan, Zhao, Ji‐Min, and Zang, Ming‐Xi
- Subjects
PHYSIOLOGICAL effects of insulin ,CELL proliferation ,HEART physiology ,CELL differentiation ,PANCREATIC beta cells ,POLYMERASE chain reaction - Abstract
Insulin is a peptide hormone produced by beta cells of the pancreas. The roles of insulin in energy metabolism have been well studied, with most of the attention focused on glucose utilization, but the roles of insulin in cell proliferation and differentiation remain unclear. In this study, we observed for the first time that 10 nmol/L insulin treatment induces cell proliferation and cardiac differentiation of P19 CL6 cells, whereas 50 and 100 nmol/L insulin treatment induces P19 CL6 cell apoptosis and blocks cardiac differentiation of P19 CL6 cells. By using real-time polymerase chain reaction ( PCR) and Western blotting analysis, we found that the m RNA levels of cyclin D1 and α myosin heavy chain (α- MHC) are induced upon 10 nmol/L insulin stimulation and inhibited upon 50/100 nmol/L insulin treatment, whereas the m RNA levels of BCL-2-antagonist of cell death ( BAD) exists a reverse trend. The similar results were observed in P19 CL6 cells expressing GATA-6 or peroxisome proliferator-activated receptor α ( PPARα). Our results identified the downstream targets of insulin, cyclin D1, BAD, α- MHC, and GATA-4, elucidate a novel molecular mechanism of insulin in promoting cell proliferation and differentiation. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF