201. Research on the Deviation Correction Control of a Tracked Drilling and Anchoring Robot in a Tunnel Environment.
- Author
-
Wang, Chuanwei, Ma, Hongwei, Xue, Xusheng, Mao, Qinghua, Song, Jinquan, Wang, Rongquan, and Liu, Qi
- Subjects
TUNNELS ,ROBOTS ,MOTION control devices ,ANGULAR velocity ,INTELLIGENT control systems ,PID controllers - Abstract
In response to the challenges of multiple personnel, heavy support tasks, and high labor intensity in coal mine tunnel drilling and anchoring operations, this study proposes a novel tracked drilling and anchoring robot. The robot is required to maintain alignment with the centerline of the tunnel during operation. However, owing to the effects of skidding and slipping between the track mechanism and the floor, the precise control of a drilling and anchoring robot in tunnel environments is difficult to achieve. Through an analysis of the body and track mechanisms of the drilling and anchoring robot, a kinematic model reflecting the pose, steering radius, steering curvature, and angular velocity of the drive wheel of the drilling and anchoring robot was established. This facilitated the determination of speed control requirements for the track mechanism under varying driving conditions. Mathematical models were developed to describe the relationships between a tracked drilling and anchoring robot and several key factors in tunnel environments, including the minimum steering space required by the robot, the minimum relative steering radius, the steering angle, and the lateral distance to the sidewalls. Based on these models, deviation-correction control strategies were formulated for the robot, and deviation-correction path planning was completed. In addition, a PID motion controller was developed for the robot, and trajectory-tracking control simulation experiments were conducted. The experimental results indicate that the tracked drilling and anchoring robot achieves precise control of trajectory tracking, with a tracking error of less than 0.004 m in the x-direction from the tunnel centerline and less than 0.001 m in the y-direction. Considering the influence of skidding, the deviation correction control performance test experiments of the tracked drilling and anchoring robot at dy = 0.5 m away from the tunnel centerline were completed. In the experiments, the tracked drilling and anchoring robot exhibited a significant difference in speed between the two sides of the tracks with a track skid rate of 0.22. Although the real-time tracking maximum error in the y-direction from the tunnel centerline was 0.13 m, the final error was 0.003 m, meeting the requirements for position deviation control of the drilling and anchoring robot in tunnel environments. These research findings provide a theoretical basis and technical support for the intelligent control of tracked mobile devices in coal mine tunnels, with significant theoretical and engineering implications. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF