201. Do You Believe Your (Social Media) Data? A Personal Story on Location Data Biases, Errors, and Plausibility as Well as Their Visualization
- Author
-
Tobias Isenberg, Zujany Salazar, Rafael Blanco, Catherine Plaisant, Analysis and Visualization (AVIZ), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Interaction avec l'Humain (IaH), Laboratoire Interdisciplinaire des Sciences du Numérique (LISN), Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Télécom SudParis (TSP), University of Maryland [Baltimore], CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Interaction avec l'Humain (IaH), and CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
iNaturalist ,Data obfuscation ,[SCCO.COMP]Cognitive science/Computer science ,020207 software engineering ,02 engineering and technology ,Data error ,Citizen science ,Computer Graphics and Computer-Aided Design ,Social media data ,Bias ,Signal Processing ,Computer Graphics ,0202 electrical engineering, electronic engineering, information engineering ,Humans ,Data bias ,Panoramio ,Computer Vision and Pattern Recognition ,Flickr ,Social Media ,Data plausibility ,Software - Abstract
We present a case study on a journey about a personal data collection of carnivorous plant species habitats, and the resulting scientific exploration of location data biases, data errors, location hiding, and data plausibility. While initially driven by personal interest, our work led to the analysis and development of various means for visualizing threats to insight from geo-tagged social media data. In the course of this endeavor we analyzed local and global geographic distributions and their inaccuracies. We also contribute Motion Plausibility Profiles-a new means for visualizing how believable a specific contributor's location data is or if it was likely manipulated. We then compared our own repurposed social media dataset with data from a dedicated citizen science project. Compared to biases and errors in the literature on traditional citizen science data, with our visualizations we could also identify some new types or show new aspects for known ones. Moreover, we demonstrate several types of errors and biases for repurposed social media data. Please note that people with color impairments may consider our alternative paper version.
- Published
- 2022