201. Revisiting Kneser’s Theorem for Field Extensions
- Author
-
Gilles Zémor, Christine Bachoc, Oriol Serra, Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS), Universitat Politècnica de Catalunya [Barcelona] (UPC), Universitat Politècnica de Catalunya. Departament de Matemàtiques, and Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
- Subjects
Pure mathematics ,Additive combinatorics ,Field theory (Physics) ,Matemàtiques i estadística::Àlgebra::Teoria de cossos i polinomis [Àrees temàtiques de la UPC] ,11 Number theory::11P Additive number theory [Classificació AMS] ,Mathematics::Analysis of PDEs ,Field (mathematics) ,12 Field theory and polynomials::12F Field extensions [Classificació AMS] ,0102 computer and information sciences ,01 natural sciences ,Separable space ,Combinatorics ,11 Number theory::11P Additive number theory ,partitions [Classificació AMS] ,[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO] ,FOS: Mathematics ,Mathematics - Combinatorics ,11P70 ,Discrete Mathematics and Combinatorics ,Number Theory (math.NT) ,0101 mathematics ,Matemàtiques i estadística::Àlgebra::Teoria de nombres [Àrees temàtiques de la UPC] ,ComputingMilieux_MISCELLANEOUS ,Mathematics ,Teoria de camps (física) ,Partitions (Mathematics) ,Conjecture ,Mathematics - Number Theory ,Particions (Matemàtica) ,010102 general mathematics ,[MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA] ,Extension (predicate logic) ,Addition theorem ,Computational Mathematics ,010201 computation theory & mathematics ,Field extension ,partitions ,linear versions ,Combinatorics (math.CO) - Abstract
A Theorem of Hou, Leung and Xiang generalised Kneser's addition Theorem to field extensions. This theorem was known to be valid only in separable extensions, and it was a conjecture of Hou that it should be valid for all extensions. We give an alternative proof of the theorem that also holds in the non-separable case, thus solving Hou's conjecture. This result is a consequence of a strengthening of Hou et al.'s theorem that is a transposition to extension fields of an addition theorem of Balandraud., 17 pages
- Published
- 2018