Back to Search
Start Over
Topological entropy for locally linearly compact vector spaces and field extensions
- Source :
- Topological Algebra and its Applications, Vol 8, Iss 1, Pp 58-66 (2020)
- Publication Year :
- 2018
- Publisher :
- arXiv, 2018.
-
Abstract
- Let $\mathbb{K}$ be a discrete field and $(V, \phi)$ a flow over the category of locally linearly compact $\mathbb{K}$-spaces. Here we give the formulas to compute the topological entropy of $(V,\phi)$ subject to the extension or the restriction of scalars.<br />Comment: conference paper
- Subjects :
- Pure mathematics
restriction
Field (mathematics)
Topological entropy
Group Theory (math.GR)
01 natural sciences
linearly compact vector space
topological entropy
0103 physical sciences
QA1-939
FOS: Mathematics
0101 mathematics
locally linearly compact vector space
continuous endomorphism
Physics
37a35
15a04
Algebra and Number Theory
Applied Mathematics
extension
010102 general mathematics
20k30
Extension (predicate logic)
MAT/02 - ALGEBRA
algebraic dynamical system
15a03
Flow (mathematics)
Field extension
22b05
010307 mathematical physics
Geometry and Topology
Mathematics - Group Theory
Mathematics
Vector space
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Topological Algebra and its Applications, Vol 8, Iss 1, Pp 58-66 (2020)
- Accession number :
- edsair.doi.dedup.....67d569fe2298235a6c5e50a3e8d9b7b7
- Full Text :
- https://doi.org/10.48550/arxiv.1809.02144