201. Optimization of synergistic capturing platinum group metals by Fe-Sn and its mechanism.
- Author
-
He X, Ding Y, Shi Z, Zhao B, Zhang C, Han F, Ren J, and Zhang S
- Subjects
- Catalysis, Metals chemistry, Tin chemistry, Alloys chemistry, Platinum chemistry, Iron chemistry
- Abstract
Platinum group metals (PGMs) are strategic metals. Auto-exhaust catalysts are their main application fields. The recovery of PGMs from spent auto-exhaust catalysts has remarkable economic value and strategic significance. Aiming at the problems of ferrosilicon generation for Fe capturing and subsequent oxygen blowing to remove iron with high energy consumption and heat release, a technology of Fe-Sn synergistic capturing PGMs was proposed. Taking full the advantage of the lower melting point of Fe-Sn alloy (<1200 °C) and its unique affinity for PGMs, the PGMs were captured at approximate 1400 °C with Fe-Sn as the collector. In experiment, 500 g of spent auto-exhaust catalysts were employed to minimize error and approximate industrial production. The mechanism of Fe-Sn synergistic capturing PGMs was elucidated. The generation of Fe-Sn-PGMs alloy lowered the activity of [PGMs] in the system, accelerated the reduction of the PGMs oxides and promoted the alloying of [PGMs]. Therefore, Fe-Sn synergistic capturing PGMs was realized. The inability of Si to enter the alloy phase was confirmed by theoretical calculations, avoiding the generation of ferrosilicon. The effects of basicity, CaF
2 , m(Fe)/m(Sn) and the amount of collector on capturing PGMs were optimized. Under the optimized conditions (basicity R = 1.1, spent auto-exhaust catalysts 70 wt%, CaO 30 wt%, B2 O3 10 wt%, CaF2 7 wt%, m(Fe)/m(Sn) = 1/1 and the collector 15 wt%), the content of PGMs in the slag phase was 2.46 g/t. It is feasible to remove Fe and Sn by oxidation to achieve the purpose of PGMs enrichment. This technology offers guidance on the safe, environmentally sound, and efficient disposal of spent auto-exhaust catalysts, promoting the sustainable development of PGMs., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF