Back to Search
Start Over
Development and characterization of smart composites reinforced with fibrillated cellulose and nickel-titanium alloy.
- Source :
-
International journal of biological macromolecules [Int J Biol Macromol] 2024 May; Vol. 267 (Pt 1), pp. 131189. Date of Electronic Publication: 2024 Mar 28. - Publication Year :
- 2024
-
Abstract
- The current study presents the synergistic effects of fibrillated cellulose (FC) and nickel-titanium (NiTi) alloy on the performance properties of smart composites. Epoxy resin was reinforced with loadings of 1 %, 3 %, and 5 % FC and 3 % NiTi. The composites were produced using the casting method. The morphological properties have been analyzed using scanning electron microscopy (SEM). For mechanical properties, yield strength, modulus of elasticity, hardness, and impact energy were determined. The corrosion rate was determined via electrochemical corrosion testing. The recovery test was used to measure the shape-memory of the composites. The self-healing of the artificial defect in the composites was observed using a thermal camera. The yield strength, modulus of elasticity, hardness, and impact energy of composites reinforced with 5 % FC and 3 % NiTi increased by 168.2 %, 290 %, 33.3 %, and 114.3 %, respectively, compared to pure epoxy resin. There has been a 56.3 % decrease in the corrosion rate. The percentage of composites that returned from the final state to the original state after a deformation was 4 %. Self-healing analysis revealed that the scratch defect in composites was healed after 24 h. It is concluded that smart composites can be used in the aviation and automotive industries.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-0003
- Volume :
- 267
- Issue :
- Pt 1
- Database :
- MEDLINE
- Journal :
- International journal of biological macromolecules
- Publication Type :
- Academic Journal
- Accession number :
- 38554924
- Full Text :
- https://doi.org/10.1016/j.ijbiomac.2024.131189