151. Topic segmentation in ASR transcripts using bidirectional rnns for change detection
- Author
-
Imran Sehikh, Irina Illina, Dominique Fohr, TCS Innovation Labs, Speech Modeling for Facilitating Oral-Based Communication (MULTISPEECH), Inria Nancy - Grand Est, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Department of Natural Language Processing & Knowledge Discovery (LORIA - NLPKD), Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Grid'5000, ANR-12-BS02-0009,ContNomina,Exploitation du contexte pour la reconnaissance de noms propres dans les documents diachroniques audio(2012), Fohr, Dominique, and BLANC - Exploitation du contexte pour la reconnaissance de noms propres dans les documents diachroniques audio - - ContNomina2012 - ANR-12-BS02-0009 - BLANC - VALID
- Subjects
business.industry ,Computer science ,Speech recognition ,020206 networking & telecommunications ,02 engineering and technology ,computer.software_genre ,Cohesion (linguistics) ,topic segmentation ,Recurrent neural network ,Discriminative model ,Broadcast television systems ,0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing ,Segmentation ,The Internet ,recurrent neural networks ,Artificial intelligence ,[INFO.INFO-HC]Computer Science [cs]/Human-Computer Interaction [cs.HC] ,[INFO.INFO-HC] Computer Science [cs]/Human-Computer Interaction [cs.HC] ,business ,computer ,Change detection ,Natural language processing - Abstract
International audience; Topic segmentation methods are mostly based on the idea of lexical cohesion, in which lexical distributions are analysed across the document and segment boundaries are marked in areas of low cohesion. We propose a novel approach for topic segmentation in speech recognition transcripts by measuring lexical cohesion using bidirectional Recurrent Neural Networks (RNN). The bidirectional RNNs capture context in the past and the following set of words. The past and following contexts are compared to perform topic change detection. In contrast to existing works based on sequence and discrim-inative models for topic segmentation, our approach does not use a segmented corpus nor (pseudo) topic labels for training. Our model is trained using news articles obtained from the internet. Evaluation on ASR transcripts of French TV broadcast news programs demonstrates the effectiveness of our proposed approach.
- Published
- 2017