Back to Search Start Over

Using Linear Interpolation to Improve Histogram Equalization for Speech Recognition

Authors :
Dominique Fohr
Irina Illina
Filipp Korkmazsky
Analysis, perception and recognition of speech (PAROLE)
INRIA Lorraine
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)
Source :
8th International Conference on Spoken Language Processing-ICSLP'2004, 8th International Conference on Spoken Language Processing-ICSLP'2004, 2004, Jeju, Corée du Sud, 4 p, INTERSPEECH
Publication Year :
2004
Publisher :
HAL CCSD, 2004.

Abstract

Colloque avec actes et comité de lecture. internationale.; International audience; This paper presents a novel approach to speech data normalization by introducing interpolation for histogram equalization. We study different ways of histogram interpolation that inhence this normalization technique. We found that using a special weighting factor to combine current and past test sentence statistics improved speech recognition performance.

Details

Language :
English
Database :
OpenAIRE
Journal :
8th International Conference on Spoken Language Processing-ICSLP'2004, 8th International Conference on Spoken Language Processing-ICSLP'2004, 2004, Jeju, Corée du Sud, 4 p, INTERSPEECH
Accession number :
edsair.doi.dedup.....2f2ca0504b459e41534b4cb16dccf990