348 results on '"Denommé-Pichon AS"'
Search Results
152. The clinical and molecular spectrum of QRICH1 associated neurodevelopmental disorder.
- Author
-
Kumble, Smitha, Levy, Amanda M., Punetha, Jaya, Gao, Hua, Ah Mew, Nicholas, Anyane‐Yeboa, Kwame, Benke, Paul J., Berger, Sara M., Bjerglund, Lise, Campos‐Xavier, Belinda, Ciliberto, Michael, Cohen, Julie S., Comi, Anne M., Curry, Cynthia, Damaj, Lena, Denommé‐Pichon, Anne‐Sophie, Emrick, Lisa, Faivre, Laurence, Fasano, Mary Beth, and Fiévet, Alice
- Abstract
De novo variants in QRICH1 (Glutamine‐rich protein 1) has recently been reported in 11 individuals with intellectual disability (ID). The function of QRICH1 is largely unknown but it is likely to play a key role in the unfolded response of endoplasmic reticulum stress through transcriptional control of proteostasis. In this study, we present 27 additional individuals and delineate the clinical and molecular spectrum of the individuals (n = 38) with QRICH1 variants. The main clinical features were mild to moderate developmental delay/ID (71%), nonspecific facial dysmorphism (92%) and hypotonia (39%). Additional findings included poor weight gain (29%), short stature (29%), autism spectrum disorder (29%), seizures (24%) and scoliosis (18%). Minor structural brain abnormalities were reported in 52% of the individuals with brain imaging. Truncating or splice variants were found in 28 individuals and 10 had missense variants. Four variants were inherited from mildly affected parents. This study confirms that heterozygous QRICH1 variants cause a neurodevelopmental disorder including short stature and expands the phenotypic spectrum to include poor weight gain, scoliosis, hypotonia, minor structural brain anomalies, and seizures. Inherited variants from mildly affected parents are reported for the first time, suggesting variable expressivity. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
153. Interest of exome sequencing trio‐like strategy based on pooled parental DNA for diagnosis and translational research in rare diseases.
- Author
-
Tran Mau‐Them, Frederic, Duffourd, Yannis, Vitobello, Antonio, Bruel, Ange‐Line, Denommé‐Pichon, Anne‐Sophie, Nambot, Sophie, Delanne, Julian, Moutton, Sebastien, Sorlin, Arthur, Couturier, Victor, Bourgeois, Valentin, Chevarin, Martin, Poe, Charlotte, Mosca‐Boidron, Anne‐Laure, Callier, Patrick, Safraou, Hana, Faivre, Laurence, Philippe, Christophe, and Thauvin‐Robinet, Christel
- Subjects
RARE diseases ,TRANSLATIONAL research ,DNA ,DIAGNOSIS ,COST effectiveness - Abstract
Background: Exome sequencing (ES) has become the most powerful and cost‐effective molecular tool for deciphering rare diseases with a diagnostic yield approaching 30%–40% in solo‐ES and 50% in trio‐ES. We applied an innovative parental DNA pooling method to reduce the parental sequencing cost while maintaining the diagnostic yield of trio‐ES. Methods: We pooled six (Agilent‐CRE‐v2–100X) or five parental DNA (TWIST‐HCE–70X) aiming to detect allelic balance around 8–10% for heterozygous status. The strategies were applied as second‐tier (74 individuals after negative solo‐ES) and first‐tier approaches (324 individuals without previous ES). Results: The allelic balance of parental‐pool variants was around 8.97%. Sanger sequencing uncovered false positives in 1.5% of sporadic variants. In the second‐tier approach, we evaluated than two thirds of the Sanger validations performed after solo‐ES (41/59–69%) would have been saved if the parental‐pool segregations had been available from the start. The parental‐pool strategy identified a causative diagnosis in 18/74 individuals (24%) in the second‐tier and in 116/324 individuals (36%) in the first‐tier approaches, including 19 genes newly associated with human disorders. Conclusions: Parental‐pooling is an efficient alternative to trio‐ES. It provides rapid segregation and extension to translational research while reducing the cost of parental and Sanger sequencing. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
154. A novel mutation in the transmembrane 6 domain of GABBR2 leads to a Rett-like phenotype
- Author
-
Céline Brulard, Philippe Parent, Stéphane Bézieau, Anne-Sophie Denommé-Pichon, Médéric Jeanne, Annick Toutain, Frédéric Laumonnier, Estelle Colin, Bertrand Isidor, Brigitte Gilbert-Dussardier, Audrey Donnart, Sylvie Odent, Sophie Blesson, Li Xue, Richard Redon, Servane Alirol, Philippe Rondard, and Marie-Laure Vuillaume
- Subjects
0301 basic medicine ,Genetics ,Biology ,medicine.disease ,Phenotype ,In vitro ,Transmembrane protein ,03 medical and health sciences ,Epileptic spasms ,030104 developmental biology ,0302 clinical medicine ,Neurology ,In vivo ,medicine ,Neurology (clinical) ,GABBR2 ,Functional studies ,Novel mutation ,030217 neurology & neurosurgery - Abstract
We read with great interest the recent article published by Yooet al1reporting 4 additional Rett-like (RTT) patients with therecurring A567TGABBR2mutation.2More interestingly, theyshowed, with in vitro and in vivo functional studies, that theseverity of the phenotype caused byGABBR2mutations wasdirectly linked to their impact onc-aminobutyric acid (GABA)signaling activity, this latter being more reduced with the 2 mis-sense mutations, S695I and I705N, associated with epilepticencephalopathy (EE).1,3They hypothesized that the position ofvariants in different transmembrane (TM) domains ofGABBR2,TM6 for S695I and I705N, and TM3 for A567T, could deter-mine the phenotypic expression. This hypothesis was recentlyreinforced with the report of a novelGABBR2mutation also inTM6 and associated with infantile epileptic spasms.
- Published
- 2018
155. Erratum to: Haploinsufficiency of the E3 ubiquitin-protein ligase gene TRIP12 causes intellectual disability with or without autism spectrum disorders, speech delay, and dysmorphic features
- Author
-
Jing Zhang, Tomasz Gambin, Bo Yuan, Przemyslaw Szafranski, Jill A. Rosenfeld, Mohammed Al Balwi, Abdulrahman Alswaid, Lihadh Al-Gazali, Aisha M. Al Shamsi, Makanko Komara, Bassam R. Ali, Elizabeth Roeder, Laura McAuley, Daniel S. Roy, David K. Manchester, Pilar Magoulas, Lauren E. King, Vickie Hannig, Dominique Bonneau, Anne-Sophie Denommé-Pichon, Majida Charif, Thomas Besnard, Stéphane Bézieau, Benjamin Cogné, Joris Andrieux, Wenmiao Zhu, Weimin He, Francesco Vetrini, Patricia A. Ward, Sau Wai Cheung, Weimin Bi, Christine M. Eng, James R. Lupski, Yaping Yang, Ankita Patel, Seema R. Lalani, Fan Xia, and Paweł Stankiewicz
- Subjects
Genetics ,Genetics (clinical) - Published
- 2017
156. Liste des collaborateurs
- Author
-
Arveiler, Benoît, Auger, Nathalie, Bartoli, Marc, Becquemont, Laurent, Béroud, Christophe, Bézieau, Stéphane, Biancalana, Valérie, Bilhou-Nabéra, Chrystèle, Blanc, Pierre, Bonneau, Dominique, Brice, Alexis, Chabannon, Christian, Colas, Chrystelle, Corcuff, Mélanie, Cormier-Daire, Valérie, Coutton, Charles, Denommé-Pichon, Anne-Sophie, Doco-Fenzy, Martine, Dollfus, Hélène, Edery, Patrick, Feingold, Josué, Férec, Claude, Frébourg, Thierry, de Fréminville, Bénédicte, Geneviève, David, Goizet, Cyril, Grattepanche, Coralie, Guien, Céline, Heinzmann, Anna, Héron, Delphine, Houdayer, Claude, Huet, Frédéric, Kannengiesser, Caroline, Krahn, Martin, Labarthe, François, Lacombe, Didier, Lèbre, Anne-Sophie, Le Caignec, Cédric, Leheup, Bruno, Lesca, Gaëtan, Lévy, Nicolas, Loriot, Marie-Anne, Lyonnet, Stanislas, Malan, Valérie, Malzac, Perrine, Mandel, Jean-Louis, Marlin, Sandrine, Mattei, Jean-François, Ménoret, Estelle, Muller, Jean, Munnich, Arnold, Nguyen, Karine, Nicolas, Gaël, Odent, Sylvie, Pacot, Laurence, Paquis-Flucklinger, Véronique, Parfait, Béatrice, Pasmant, Eric, Pasquier, Laurent, Petit, Florence, Philip, Nicole, Plutino, Morgane, Putoux, Audrey, Ramond, Francis, Romana, Serge, Rooryck-Thambo, Caroline, Rötig, Agnès, Roussey, Michel, Salgado, David, Sanlaville, Damien, Saugier-Veber, Pascale, Schluth-Bolard, Caroline, Siffroi, Jean-Pierre, Stoppa-Lyonnet, Dominique, Thauvin, Christel, Touraine, Renaud, Troadec, Marie-Bérengère, Verloes, Alain, Vidaud, Dominique, and Vidaud, Michel
- Published
- 2022
- Full Text
- View/download PDF
157. De Novo Disruption of the Proteasome Regulatory Subunit PSMD12 Causes a Syndromic Neurodevelopmental Disorder
- Author
-
Jill A. Rosenfeld, Dominique Bonneau, Deborah Barbouth, Stephen Sanders, Kimberly Nugent, Kimberly Glaser, Ignacio Briceño, Kyle Retterer, Sylvain Simon, Weimin Bi, Yaping Yang, Holly A.F. Stessman, Kristin G. Monaghan, Pawel Stankiewicz, Caroline Rooryck, Sébastien Küry, James R. Lupski, Xenia Latypova, Carlos A. Bacino, Stephanie Sacharow, Sandra Mercier, Evan E. Eichler, Marie Vincent, Elizabeth Roeder, Sébastien Schmitt, Thomas Besnard, Alberto Gómez, Ankita Patel, Brigitte Gilbert-Dussardier, Valérie Malan, Mathilde Nizon, Jessica Douglas, Annick Toutain, Peter-Michael Kloetzel, Anne-Sophie Denommé-Pichon, Frédéric Ebstein, Fan Xia, Laurent Pasquier, Megan T. Cho, Mathilde Pacault, Laurence Perrin-Sabourin, James B. Gibson, Bertrand Isidor, William J. Craigen, Bo Yuan, Stéphane Bézieau, Chad A. Shaw, Richard Redon, Janice L. Smith, Benjamin Cogné, Eric Bieth, Wallid Deb, Kamal Khan, Sylvie Odent, Andrea Lehmann, Tahir N. Khan, Philippe Parent, Christelle Golzio, Nicholas Katsanis, Marie-Line Jacquemont, Tomasz Gambin, Service de génétique médicale - Unité de génétique clinique [Nantes], Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes), Boston Children's Hospital, Department of Medicine, Karolinska Institutet [Stockholm], Service de Génétique [Purpan], CHU Toulouse [Toulouse]-Hôpital Purpan [Toulouse], CHU Toulouse [Toulouse], Centre Hospitalier Universitaire de La Réunion (CHU La Réunion), Department of Pediatrics, The University of Texas at San Antonio (UTSA), LabEX IGO Immunothérapie Grand Ouest, Service de Cancéro-Dermatologie, Centre hospitalier universitaire de Nantes (CHU Nantes), Anti-tumor immunosurveillances and immunotherapy (CRCINA - Département INCIT - Equipe 3), Centre de recherche de Cancérologie et d'Immunologie / Nantes - Angers (CRCINA), Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN), Mitochondrie : Régulations et Pathologie, Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM), Service de génétique [Angers], Université d'Angers (UA)-Centre Hospitalier Universitaire d'Angers (CHU Angers), PRES Université Nantes Angers Le Mans (UNAM)-PRES Université Nantes Angers Le Mans (UNAM), Génétique Médicale, Centre hospitalier universitaire de Poitiers (CHU Poitiers)-Centre de Référence Anomalies du Développement Ouest, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Service de génétique clinique [Rennes], Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-CHU Pontchaillou [Rennes]-Hôpital Sud, CHU Pontchaillou [Rennes], Service de génétique [Tours], Hôpital Bretonneau-Centre Hospitalier Régional Universitaire de Tours (CHRU Tours), Imagerie et cerveau, Université de Tours-Institut National de la Santé et de la Recherche Médicale (INSERM), CHU Bordeaux [Bordeaux], Laboratoire Histologie Embryologie Cytogénétique [CHU Necker], CHU Necker - Enfants Malades [AP-HP], Instituto de Genetica Humana, Pontificia Universidad Javeriana, Universitad de la Sabana, Baylor College of Medicine (BCM), Baylor University, unité de recherche de l'institut du thorax UMR1087 UMR6291 (ITX), Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Center for Human Disease Modeling, Duke University [Durham], National Heart, Lung, and Blood Institute, Wellcome Trust, French Ministry of Health, HUGODIMS, 2013, RC14_0107, Health Regional Agency from Poitou-Charentes, U54HG006542, US National Human Genome Research Institute, Physiopathologie Cardiovasculaire et Mitochondriale (MITOVASC), Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Charité - UniversitätsMedizin = Charité - University Hospital [Berlin], Duke University Medical Center, Warsaw University of Technology [Warsaw], University of California [San Francisco] (UC San Francisco), University of California (UC), University of Miami, Service Génétique Médicale [CHU Toulouse], Institut Fédératif de Biologie (IFB), Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Pôle Biologie [CHU Toulouse], Centre Hospitalier Universitaire de Toulouse (CHU Toulouse), Hôpital Robert Debré, GeneDx [Gaithersburg, MD, USA], Centre Hospitalier Universitaire d'Angers (CHU Angers), PRES Université Nantes Angers Le Mans (UNAM), Nantes Université (Nantes Univ), Anti-Tumor Immunosurveillance and Immunotherapy (CRCINA-ÉQUIPE 3), Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA), Université d'Angers (UA)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Université d'Angers (UA)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes), Laboratoire de Biologie Neurovasculaire Intégrée [Angers] (CNRS UMR6214 - INSERM U771), Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Faculté de Médecine d'Angers, Centre Hospitalier Régional Universitaire de Brest (CHRU Brest), Centre hospitalier universitaire de Poitiers (CHU Poitiers), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Université de Rennes (UR)-CHU Pontchaillou [Rennes]-hôpital Sud, Centre Hospitalier Régional Universitaire de Tours (CHRU Tours)-Hôpital Bretonneau, Imagerie et cerveau (iBrain - Inserm U1253 - UNIV Tours ), Université de Tours (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Pontificia Universidad Javeriana (PUJ), University of Washington [Seattle], Howard Hughes Medical Institute [Seattle], Howard Hughes Medical Institute (HHMI), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Nantes Université - UFR de Médecine et des Techniques Médicales (Nantes Univ - UFR MEDECINE), Nantes Université - pôle Santé, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Santé, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-CHU Pontchaillou [Rennes]-hôpital Sud, Jonchère, Laurent, Université de Nantes ( UN ) -Centre hospitalier universitaire de Nantes ( CHU Nantes ), Centre Hospitalier Universitaire de La Réunion ( CHU La Réunion ), The University of Texas at San Antonio ( UTSA ), Centre hospitalier universitaire de Nantes ( CHU Nantes ), Anti-tumor immunosurveillances and immunotherapy ( CRCINA - Département INCIT - Equipe 3 ), Centre de recherche de Cancérologie et d'Immunologie / Nantes - Angers ( CRCINA ), Université d'Angers ( UA ) -Université de Nantes ( UN ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut de Recherche en Santé de l'Université de Nantes ( IRS-UN ) -Centre hospitalier universitaire de Nantes ( CHU Nantes ) -Université d'Angers ( UA ) -Université de Nantes ( UN ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut de Recherche en Santé de l'Université de Nantes ( IRS-UN ) -Centre hospitalier universitaire de Nantes ( CHU Nantes ), Université d'Angers ( UA ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Université d'Angers ( UA ) -CHU Angers, Centre hospitalier universitaire de Poitiers ( CHU Poitiers ) -Centre de Référence Anomalies du Développement Ouest, Institut de Génétique et Développement de Rennes ( IGDR ), Université de Rennes 1 ( UR1 ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS ) -Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -CHU Pontchaillou [Rennes]-Hôpital Sud, Hôpital Bretonneau-CHRU Tours, Université de Tours-Institut National de la Santé et de la Recherche Médicale ( INSERM ), Universidad de la Sabana, Baylor College of Medicine ( BCM ), Baylor College of Medicine, unité de recherche de l'institut du thorax UMR1087 UMR6291 ( ITX ), Université de Nantes ( UN ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), and Duke university [Durham]
- Subjects
Male ,0301 basic medicine ,Microcephaly ,Intellectual disability ,[SDV.GEN] Life Sciences [q-bio]/Genetics ,030105 genetics & heredity ,0302 clinical medicine ,Neurodevelopmental disorder ,Ubiquitin ,PSMD12 ,Syndromic neurodevelopmental disorder ,Child ,Zebrafish ,Genetics (clinical) ,Genetics ,Proteasome 26S ,Phenotype ,proteasome 26S ,intellectual disability ,Child, Preschool ,Female ,Proteasome Endopeptidase Complex ,Adolescent ,DNA Copy Number Variations ,syndromic neurodevelopmental disorder ,Protein subunit ,Down-Regulation ,Biology ,Polymorphism, Single Nucleotide ,03 medical and health sciences ,Report ,RPN5 ,ubiquitin ,medicine ,Animals ,Humans ,[SDV.GEN]Life Sciences [q-bio]/Genetics ,Point mutation ,Infant ,Correction ,biology.organism_classification ,medicine.disease ,Human genetics ,Disease Models, Animal ,030104 developmental biology ,Proteasome ,Neurodevelopmental Disorders ,biology.protein ,[ SDV.GEN ] Life Sciences [q-bio]/Genetics ,Gene Deletion ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology ,030217 neurology & neurosurgery - Abstract
12 páginas Trichosporon asahii es un hongo patógeno emergente reportado en la literatura médica principalmente en pacientes inmunocomprometidos. No obstante, el presente caso es inusual debido a que se trata de un paciente adulto joven inmunocompetente que presentó fungemia por T. asahii y al mismo tiempo desarrolló insuficiencia respiratoria aguda por bronquiolitis respiratoria y neumonía descamativa, la cual resolvió posterior al tratamiento antimicótico instaurado, soporte ventilatorio y vigilancia en Unidad de Cuidado Intesivo (UCI). Degradation of proteins by the ubiquitin-proteasome system (UPS) is an essential biological process in the development of eukaryotic organisms. Dysregulation of this mechanism leads to numerous human neurodegenerative or neurodevelopmental disorders. Through a multi-center collaboration, we identified six de novo genomic deletions and four de novo point mutations involving PSMD12, encoding the non-ATPase subunit PSMD12 (aka RPN5) of the 19S regulator of 26S proteasome complex, in unrelated individuals with intellectual disability, congenital malformations, ophthalmologic anomalies, feeding difficulties, deafness, and subtle dysmorphic facial features. We observed reduced PSMD12 levels and an accumulation of ubiquitinated proteins without any impairment of proteasome catalytic activity. Our PSMD12 loss-of-function zebrafish CRISPR/Cas9 model exhibited microcephaly, decreased convolution of the renal tubules, and abnormal craniofacial morphology. Our data support the biological importance of PSMD12 as a scaffolding subunit in proteasome function during development and neurogenesis in particular; they enable the definition of a neurodevelopmental disorder due to PSMD12 variants, expanding the phenotypic spectrum of UPS-dependent disorders.
- Published
- 2017
158. De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability
- Author
-
Küry, S. (Sébastien), Woerden, G.M. (Geeske) van, Besnard, T. (Thomas), Proietti-Onori, M. (Martina), Latypova, X. (Xénia), Towne, M.C. (Meghan C.), Cho, M.T. (Megan T.), Prescott, T. (Trine), Ploeg, M.A. (Melissa), Sanders, S. (Stephan), Stessman, H.A.F. (Holly A F), Pujol, A. (Aurora), Distel, B. (Ben), Robak, L.A. (Laurie A.), Bernstein, J.A. (Jonathan A.), Denommé-Pichon, A.-S. (Anne-Sophie), Lesca, G. (Gaëtan), Sellars, E.A. (Elizabeth A.), Berg, J. (Jonathan), Carré, W. (Wilfrid), Busk, ØL. (Øyvind Løvold), Bon, B. (Bregje) van, Waugh, J.L. (Jeff L.), Deardorff, M.A. (Matthew), Hoganson, G.E. (George E.), Bosanko, K.B. (Katherine B.), Johnson, D.S. (Diana S.), Dabir, T. (Tabib), Holla, ØL. (Øystein Lunde), Sarkar, A. (Ajoy), Tveten, K. (Kristian), de Bellescize, J. (Julitta), Braathen, G.J. (Geir J.), Terhal, P. (Paulien), Grange, D.K. (Dorothy K.), Haeringen, A. (Arie) van, Lam, C. (Christina), Mirzaa, G.M. (Ghayda), Burton, J. (Jennifer), Bhoj, E.J. (Elizabeth J.), Douglas, J. (Jessica), Santani, A.B. (Avni B.), Nesbitt, A.I. (Addie I.), Helbig, K.L. (Katherine L.), Andrews, M.V. (Marisa V.), Begtrup, A. (Amber), Tang, S. (Sha), van Gassen, K.L.I. (Koen L.I.), Juusola, J. (Jane), Foss, K. (Kimberly), Enns, G. (Gregory), Moog, U. (Ute), Hinderhofer, K. (Katrin), Paramasivam, N. (Nagarajan), Lincoln, S. (Sharyn), Kusako, B.H. (Brandon H.), Lindenbaum, P. (Pierre), Charpentier, E. (Eric), Nowak, C.B. (Catherine B.), Cherot, E. (Elouan), Simonet, T. (Thomas), Ruivenkamp, C.A. (Claudia), Hahn, S. (Sihoun), Brownstein, C.A. (Catherine A.), Xia, F. (Fan), Schmitt, S. (Sébastien), Deb, W. (Wallid), Bonneau, D. (Dominique), Nizon, M. (Mathilde), Quinquis, D. (Delphine), Chelly, J. (Jamel), Rudolf, G. (Gabrielle), Sanlaville, D. (Damien), Parent, P. (Philippe), Gilbert-Dussardier, B. (Brigitte), Toutain, A. (Annick), Sutton, V.R. (V. Reid), Thies, J. (Jenny), Peart-Vissers, L.E.L.M. (Lisenka E L M), Boisseau, P. (Pierre), Vincent, M. (Marie), Grabrucker, A.M. (Andreas M.), Dubourg, C. (Christèle), Tan, W.-H. (Wen-Hann), Verbeek, N.E. (Nienke), Granzow, M. (Martin), Santen, G.W.E. (Gijs), Shendure, J. (Jay), Isidor, B. (Bertrand), Pasquier, L. (Laurent), Redon, R. (Richard), Yang, Y. (Yaping), State, M.W. (Matthew), Kleefstra, T. (Tjitske), Cogné, B. (Benjamin), Petrovski, S. (Slavé), Retterer, K. (Kyle), Eichler, E.E. (Evan), Rosenfeld, J.A. (Jill), Agrawal, P.B. (Pankaj B.), Bézieau, S. (Stéphane), Odent, S. (Sylvie), Elgersma, Y. (Ype), Mercier, S. (Sandra), Küry, S. (Sébastien), Woerden, G.M. (Geeske) van, Besnard, T. (Thomas), Proietti-Onori, M. (Martina), Latypova, X. (Xénia), Towne, M.C. (Meghan C.), Cho, M.T. (Megan T.), Prescott, T. (Trine), Ploeg, M.A. (Melissa), Sanders, S. (Stephan), Stessman, H.A.F. (Holly A F), Pujol, A. (Aurora), Distel, B. (Ben), Robak, L.A. (Laurie A.), Bernstein, J.A. (Jonathan A.), Denommé-Pichon, A.-S. (Anne-Sophie), Lesca, G. (Gaëtan), Sellars, E.A. (Elizabeth A.), Berg, J. (Jonathan), Carré, W. (Wilfrid), Busk, ØL. (Øyvind Løvold), Bon, B. (Bregje) van, Waugh, J.L. (Jeff L.), Deardorff, M.A. (Matthew), Hoganson, G.E. (George E.), Bosanko, K.B. (Katherine B.), Johnson, D.S. (Diana S.), Dabir, T. (Tabib), Holla, ØL. (Øystein Lunde), Sarkar, A. (Ajoy), Tveten, K. (Kristian), de Bellescize, J. (Julitta), Braathen, G.J. (Geir J.), Terhal, P. (Paulien), Grange, D.K. (Dorothy K.), Haeringen, A. (Arie) van, Lam, C. (Christina), Mirzaa, G.M. (Ghayda), Burton, J. (Jennifer), Bhoj, E.J. (Elizabeth J.), Douglas, J. (Jessica), Santani, A.B. (Avni B.), Nesbitt, A.I. (Addie I.), Helbig, K.L. (Katherine L.), Andrews, M.V. (Marisa V.), Begtrup, A. (Amber), Tang, S. (Sha), van Gassen, K.L.I. (Koen L.I.), Juusola, J. (Jane), Foss, K. (Kimberly), Enns, G. (Gregory), Moog, U. (Ute), Hinderhofer, K. (Katrin), Paramasivam, N. (Nagarajan), Lincoln, S. (Sharyn), Kusako, B.H. (Brandon H.), Lindenbaum, P. (Pierre), Charpentier, E. (Eric), Nowak, C.B. (Catherine B.), Cherot, E. (Elouan), Simonet, T. (Thomas), Ruivenkamp, C.A. (Claudia), Hahn, S. (Sihoun), Brownstein, C.A. (Catherine A.), Xia, F. (Fan), Schmitt, S. (Sébastien), Deb, W. (Wallid), Bonneau, D. (Dominique), Nizon, M. (Mathilde), Quinquis, D. (Delphine), Chelly, J. (Jamel), Rudolf, G. (Gabrielle), Sanlaville, D. (Damien), Parent, P. (Philippe), Gilbert-Dussardier, B. (Brigitte), Toutain, A. (Annick), Sutton, V.R. (V. Reid), Thies, J. (Jenny), Peart-Vissers, L.E.L.M. (Lisenka E L M), Boisseau, P. (Pierre), Vincent, M. (Marie), Grabrucker, A.M. (Andreas M.), Dubourg, C. (Christèle), Tan, W.-H. (Wen-Hann), Verbeek, N.E. (Nienke), Granzow, M. (Martin), Santen, G.W.E. (Gijs), Shendure, J. (Jay), Isidor, B. (Bertrand), Pasquier, L. (Laurent), Redon, R. (Richard), Yang, Y. (Yaping), State, M.W. (Matthew), Kleefstra, T. (Tjitske), Cogné, B. (Benjamin), Petrovski, S. (Slavé), Retterer, K. (Kyle), Eichler, E.E. (Evan), Rosenfeld, J.A. (Jill), Agrawal, P.B. (Pankaj B.), Bézieau, S. (Stéphane), Odent, S. (Sylvie), Elgersma, Y. (Ype), and Mercier, S. (Sandra)
- Abstract
Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a whole-exome sequencing approach, we identified 19 exceedingly rare de novo CAMK2A or CAMK2B variants in 24 unrelated individuals with intellectual disability. Variants were assessed for their effect on CAMK2 function and on neuronal migration. For both CAMK2A and CAMK2B, we identified mutations that decreased or increased CAMK2 auto-phosphorylation at Thr286/Thr287. We further found that all mutations affecting auto-phosphorylation also affected neuronal migration, highlighting the importance of tightly regulated CAMK2 auto-phosphorylation in neuronal function and neurodevelopment. Our data establish the importance of CAMK2A and CAMK2B and their auto-phosphorylation in human brain function and expand the phenotypic spectrum of the disorders caused by variants in key players of the glutamatergic signaling pathway.
- Published
- 2017
- Full Text
- View/download PDF
159. De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability
- Author
-
Genetica Klinische Genetica, Child Health, Genetica Sectie Genoomdiagnostiek, Küry, Sébastien, van Woerden, Geeske M, Besnard, Thomas, Proietti Onori, Martina, Latypova, Xénia, Towne, Meghan C, Cho, Megan T., Prescott, Trine E, Ploeg, Melissa A, Sanders, Jan-Stephan, Stessman, Holly A F, Pujol, Aurora, Distel, Ben, Robak, Laurie A, Bernstein, Jonathan A, Denommé-Pichon, Anne-Sophie, Lesca, Gaëtan, Sellars, Elizabeth A, Berg, Jonathan, Carré, Wilfrid, Busk, Øyvind Løvold, van Bon, Bregje W M, Waugh, Jeff L, Deardorff, Matthew, Hoganson, George E, Bosanko, Katherine B, Johnson, Diana S, Dabir, Tabib, Holla, Øystein Lunde, Sarkar, Ajoy, Tveten, Kristian, de Bellescize, Julitta, Braathen, Geir J, Terhal, Paulien A, Grange, Dorothy K, van Haeringen, Arie, Lam, Christina, Mirzaa, Ghayda, Burton, Jennifer, Bhoj, Elizabeth J., Douglas, Jessica, Santani, Avni B, Nesbitt, Addie I, Helbig, Katherine L, Andrews, Marisa V, Begtrup, Amber, Tang, Sha, van Gassen, Koen L I, Juusola, Jane, Verbeek, Nienke E, Undiagnosed Diseases Network, Genetica Klinische Genetica, Child Health, Genetica Sectie Genoomdiagnostiek, Küry, Sébastien, van Woerden, Geeske M, Besnard, Thomas, Proietti Onori, Martina, Latypova, Xénia, Towne, Meghan C, Cho, Megan T., Prescott, Trine E, Ploeg, Melissa A, Sanders, Jan-Stephan, Stessman, Holly A F, Pujol, Aurora, Distel, Ben, Robak, Laurie A, Bernstein, Jonathan A, Denommé-Pichon, Anne-Sophie, Lesca, Gaëtan, Sellars, Elizabeth A, Berg, Jonathan, Carré, Wilfrid, Busk, Øyvind Løvold, van Bon, Bregje W M, Waugh, Jeff L, Deardorff, Matthew, Hoganson, George E, Bosanko, Katherine B, Johnson, Diana S, Dabir, Tabib, Holla, Øystein Lunde, Sarkar, Ajoy, Tveten, Kristian, de Bellescize, Julitta, Braathen, Geir J, Terhal, Paulien A, Grange, Dorothy K, van Haeringen, Arie, Lam, Christina, Mirzaa, Ghayda, Burton, Jennifer, Bhoj, Elizabeth J., Douglas, Jessica, Santani, Avni B, Nesbitt, Addie I, Helbig, Katherine L, Andrews, Marisa V, Begtrup, Amber, Tang, Sha, van Gassen, Koen L I, Juusola, Jane, Verbeek, Nienke E, and Undiagnosed Diseases Network
- Published
- 2017
160. Primrose syndrome: a phenotypic comparison of patients with a ZBTB20missense variant versus a 3q13.31 microdeletion including ZBTB20
- Author
-
Juven, Aurélien, Nambot, Sophie, Piton, Amélie, Jean-Marçais, Nolwenn, Masurel, Alice, Callier, Patrick, Marle, Nathalie, Mosca-Boidron, Anne-Laure, Kuentz, Paul, Philippe, Christophe, Chevarin, Martin, Duffourd, Yannis, Gautier, Elodie, Munnich, Arnold, Rio, Marlène, Rondeau, Sophie, El Chehadeh, Salima, Schaefer, Élise, Gérard, Bénédicte, Bouquillon, Sonia, Delorme, Catherine Vincent, Francannet, Christine, Laffargue, Fanny, Gouas, Laetitia, Isidor, Bertrand, Vincent, Marie, Blesson, Sophie, Giuliano, Fabienne, Pichon, Olivier, Le Caignec, Cédric, Journel, Hubert, Perrin-Sabourin, Laurence, Fabre-Teste, Jennifer, Martin, Dominique, Vieville, Gaelle, Dieterich, Klaus, Lacombe, Didier, Denommé-Pichon, Anne-Sophie, Thauvin-Robinet, Christel, and Faivre, Laurence
- Abstract
Primrose syndrome is characterized by variable intellectual deficiency, behavior disorders, facial features with macrocephaly, and a progressive phenotype with hearing loss and ectopic calcifications, distal muscle wasting, and contractures. In 2014, ZBTB20variants were identified as responsible for this syndrome. Indeed, ZBTB20plays an important role in cognition, memory, learning processes, and has a transcription repressive effect on numerous genes. A more severe phenotype was discussed in patients with missense single nucleotide variants than in those with large deletions. Here, we report on the clinical and molecular results of 14 patients: 6 carrying ZBTB20missense SNVs, 1 carrying an early truncating indel, and 7 carrying 3q13.31 deletions, recruited through the AnDDI-Rares network. We compared their phenotypes and reviewed the data of the literature, in order to establish more powerful phenotype–genotype correlations. All 57 patients presented mild-to-severe ID and/or a psychomotor delay. Facial features were similar with macrocephaly, prominent forehead, downslanting palpebral fissures, ptosis, and large ears. Hearing loss was far more frequent in patients with missense SNVs (p= 0.002), ectopic calcification, progressive muscular wasting, and contractures were observed only in patients with missense SNVs (pnonsignificant). Corpus callosum dysgenesis (p= 0.00004), hypothyroidism (p= 0.047), and diabetes were also more frequent in this group. However, the median age was 9.4 years in patients with deletions and truncating variant compared with 15.1 years in those with missense SNVs. Longer follow-up will be necessary to determine whether the phenotype of patients with deletions is also progressive.
- Published
- 2020
- Full Text
- View/download PDF
161. Congenital hypothyroidism and hearing loss without inner ear malformation: Think TPO.
- Author
-
Ziegler, Alban, Denommé‐Pichon, Anne‐Sophie, Boucher, Sophie, Bouzamondo, Nathalie, Colin, Estelle, Dieu, Xavier, Jean Yves, Tanguy, Bouhours, Natacha, Rouleau, Stéphanie, Coutant, Régis, Rodien, Patrice, Prunier, Delphine, and Bonneau, Dominique
- Subjects
- *
CONGENITAL hypothyroidism , *HEARING disorders , *INNER ear - Abstract
GLO:8DU/01apr21:cge13902-toc-0001.jpg PHOTO (COLOR): . gl Biallelic mutations in I TPO i are responsible for thyroid dyshormonogenesis type 2A (TDH2A, MIM: 274500), an autosomal recessive disorder. Moreover, the sensorineural deafness in PDS is generally congenital or pre-lingual, severe to profound, with possible sudden worsening and is occasionally associated with vestibular syndrome, whereas in I TPO i -related deafness, hearing loss is mild to moderate. [Extracted from the article]
- Published
- 2021
- Full Text
- View/download PDF
162. Correction: Expansion of the neurodevelopmental phenotype of individuals with EEF1A2variants and genotype-phenotype study
- Author
-
Paulet, Alix, Bennett-Ness, Cavan, Ageorges, Faustine, Trost, Detlef, Green, Andrew, Goudie, David, Jewell, Rosalyn, Kraatari-Tiri, Minna, PIARD, Juliette, Coubes, Christine, Lam, Wayne, Lynch, Sally Ann, Groeschel, Samuel, Ramond, Francis, Fluss, Joël, Fagerberg, Christina, Brasch Andersen, Charlotte, Varvagiannis, Konstantinos, Kleefstra, Tjitske, Gérard, Bénédicte, Fradin, Mélanie, Vitobello, Antonio, Tenconi, Romano, Denommé-Pichon, Anne-Sophie, Vincent-Devulder, Aline, Haack, Tobias, Marsh, Joseph A, Laulund, Lone Walentin, Grimmel, Mona, Riess, Angelika, de Boer, Elke, Padilla-Lopez, Sergio, Bakhtiari, Somayeh, Ostendorf, Adam, Zweier, Christiane, Smol, Thomas, Willems, Marjolaine, Faivre, Laurence, Scala, Marcello, Striano, Pasquale, Bagnasco, Irene, Koboldt, Daniel, Iascone, Maria, Suerink, Manon, Kruer, Michael C, Levy, Jonathan, Verloes, Alain, Abbott, Catherine M, and Ruaud, Lyse
- Published
- 2024
- Full Text
- View/download PDF
163. Missense variants in ANKRD11cause KBG syndrome by impairment of stability or transcriptional activity of the encoded protein
- Author
-
de Boer, Elke, Ockeloen, Charlotte W., Kampen, Rosalie A., Hampstead, Juliet E., Dingemans, Alexander J.M., Rots, Dmitrijs, Lütje, Lukas, Ashraf, Tazeen, Baker, Rachel, Barat-Houari, Mouna, Angle, Brad, Chatron, Nicolas, Denommé-Pichon, Anne-Sophie, Devinsky, Orrin, Dubourg, Christèle, Elmslie, Frances, Elloumi, Houda Zghal, Faivre, Laurence, Fitzgerald-Butt, Sarah, Geneviève, David, Goos, Jacqueline A.C., Helm, Benjamin M., Kini, Usha, Lasa-Aranzasti, Amaia, Lesca, Gaetan, Lynch, Sally A., Mathijssen, Irene M.J., McGowan, Ruth, Monaghan, Kristin G., Odent, Sylvie, Pfundt, Rolph, Putoux, Audrey, van Reeuwijk, Jeroen, Santen, Gijs W.E., Sasaki, Erina, Sorlin, Arthur, van der Spek, Peter J., Stegmann, Alexander P.A., Swagemakers, Sigrid M.A., Valenzuela, Irene, Viora-Dupont, Eléonore, Vitobello, Antonio, Ware, Stephanie M., Wéber, Mathys, Gilissen, Christian, Low, Karen J., Fisher, Simon E., Vissers, Lisenka E.L.M., Wong, Maggie M.K., and Kleefstra, Tjitske
- Published
- 2023
- Full Text
- View/download PDF
164. Loss-of-function variants in SRRM2cause a neurodevelopmental disorder
- Author
-
Cuinat, Silvestre, Nizon, Mathilde, Isidor, Bertrand, Stegmann, Alexander, van Jaarsveld, Richard H., van Gassen, Koen L., van der Smagt, Jasper J., Volker-Touw, Catharina M.L., Holwerda, Sjoerd J.B., Terhal, Paulien A., Schuhmann, Sarah, Vasileiou, Georgia, Khalifa, Mohamed, Nugud, Alaa A., Yasaei, Hemad, Ousager, Lilian Bomme, Brasch-Andersen, Charlotte, Deb, Wallid, Besnard, Thomas, Simon, Marleen E.H., Amsterdam, Karin Huijsdens-van, Verbeek, Nienke E., Matalon, Dena, Dykzeul, Natalie, White, Shana, Spiteri, Elizabeth, Devriendt, Koen, Boogaerts, Anneleen, Willemsen, Marjolein, Brunner, Han G., Sinnema, Margje, De Vries, Bert B.A., Gerkes, Erica H., Pfundt, Rolph, Izumi, Kosuke, Krantz, Ian D., Xu, Zhou L., Murrell, Jill R., Valenzuela, Irene, Cusco, Ivon, Rovira-Moreno, Eulàlia, Yang, Yaping, Bizaoui, Varoona, Patat, Olivier, Faivre, Laurence, Tran-Mau-Them, Frederic, Vitobello, Antonio, Denommé-Pichon, Anne-Sophie, Philippe, Christophe, Bezieau, Stéphane, and Cogné, Benjamin
- Abstract
SRRM2encodes the SRm300 protein, a splicing factor of the SR-related protein family characterized by its serine- and arginine-enriched domains. It promotes interactions between messenger RNA and the spliceosome catalytic machinery. This gene, predicted to be highly intolerant to loss of function (LoF) and very conserved through evolution, has not been previously reported in constitutive human disease.
- Published
- 2022
- Full Text
- View/download PDF
165. Rare pathogenic variants in WNK3cause X-linked intellectual disability
- Author
-
Küry, Sébastien, Zhang, Jinwei, Besnard, Thomas, Caro-Llopis, Alfonso, Zeng, Xue, Robert, Stephanie M., Josiah, Sunday S., Kiziltug, Emre, Denommé-Pichon, Anne-Sophie, Cogné, Benjamin, Kundishora, Adam J., Hao, Le T., Li, Hong, Stevenson, Roger E., Louie, Raymond J., Deb, Wallid, Torti, Erin, Vignard, Virginie, McWalter, Kirsty, Raymond, F. Lucy, Rajabi, Farrah, Ranza, Emmanuelle, Grozeva, Detelina, Coury, Stephanie A., Blanc, Xavier, Brischoux-Boucher, Elise, Keren, Boris, Õunap, Katrin, Reinson, Karit, Ilves, Pilvi, Wentzensen, Ingrid M., Barr, Eileen E., Guihard, Solveig Heide, Charles, Perrine, Seaby, Eleanor G., Monaghan, Kristin G., Rio, Marlène, van Bever, Yolande, van Slegtenhorst, Marjon, Chung, Wendy K., Wilson, Ashley, Quinquis, Delphine, Bréhéret, Flora, Retterer, Kyle, Lindenbaum, Pierre, Scalais, Emmanuel, Rhodes, Lindsay, Stouffs, Katrien, Pereira, Elaine M., Berger, Sara M., Milla, Sarah S., Jaykumar, Ankita B., Cobb, Melanie H., Panchagnula, Shreyas, Duy, Phan Q., Vincent, Marie, Mercier, Sandra, Gilbert-Dussardier, Brigitte, Le Guillou, Xavier, Audebert-Bellanger, Séverine, Odent, Sylvie, Schmitt, Sébastien, Boisseau, Pierre, Bonneau, Dominique, Toutain, Annick, Colin, Estelle, Pasquier, Laurent, Redon, Richard, Bouman, Arjan, Rosenfeld, Jill. A., Friez, Michael J., Pérez-Peña, Helena, Akhtar Rizvi, Syed Raza, Haider, Shozeb, Antonarakis, Stylianos E., Schwartz, Charles E., Martínez, Francisco, Bézieau, Stéphane, Kahle, Kristopher T., and Isidor, Bertrand
- Abstract
WNK3 kinase (PRKWNK3) has been implicated in the development and function of the brain via its regulation of the cation-chloride cotransporters, but the role of WNK3 in human development is unknown.
- Published
- 2022
- Full Text
- View/download PDF
166. RNA variant assessment using transactivation and transdifferentiation.
- Author
-
Nicolas-Martinez, Emmylou C., Robinson, Olivia, Pflueger, Christian, Gardner, Alison, Corbett, Mark A., Ritchie, Tarin, Kroes, Thessa, van Eyk, Clare L., Scheffer, Ingrid E., Hildebrand, Michael S., Barnier, Jean-Vianney, Rousseau, Véronique, Genevieve, David, Haushalter, Virginie, Piton, Amélie, Denommé-Pichon, Anne-Sophie, Bruel, Ange-Line, Nambot, Sophie, Isidor, Bertrand, and Grigg, John
- Abstract
Understanding the impact of splicing and nonsense variants on RNA is crucial for the resolution of variant classification as well as their suitability for precision medicine interventions. This is primarily enabled through RNA studies involving transcriptomics followed by targeted assays using RNA isolated from clinically accessible tissues (CATs) such as blood or skin of affected individuals. Insufficient disease gene expression in CATs does however pose a major barrier to RNA based investigations, which we show is relevant to 1,436 Mendelian disease genes. We term these "silent" Mendelian genes (SMGs), the largest portion (36%) of which are associated with neurological disorders. We developed two approaches to induce SMG expression in human dermal fibroblasts (HDFs) to overcome this limitation, including CRISPR-activation-based gene transactivation and fibroblast-to-neuron transdifferentiation. Initial transactivation screens involving 40 SMGs stimulated our development of a highly multiplexed transactivation system culminating in the 6- to 90,000-fold induction of expression of 20/20 (100%) SMGs tested in HDFs. Transdifferentiation of HDFs directly to neurons led to expression of 193/516 (37.4%) of SMGs implicated in neurological disease. The magnitude and isoform diversity of SMG expression following either transactivation or transdifferentiation was comparable to clinically relevant tissues. We apply transdifferentiation and/or gene transactivation combined with short- and long-read RNA sequencing to investigate the impact that variants in USH2A , SCN1A , DMD , and PAK3 have on RNA using HDFs derived from affected individuals. Transactivation and transdifferentiation represent rapid, scalable functional genomic solutions to investigate variants impacting SMGs in the patient cell and genomic context. [Display omitted] Silent or insufficient disease gene expression in clinically accessible tissues is a major barrier to RNA-based investigations of variant impact. This study overcomes this limitation by applying either gene transactivation or neuronal transdifferentiation to obtain RNA of silent disease genes for variant assessment utilizing dermal fibroblasts from affected individuals. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
167. Mutation-specific pathophysiological mechanisms define different neurodevelopmental disorders associated with SATB1 dysfunction
- Author
-
Antonio Vitobello, Christel Depienne, Kelly Radtke, Bruria Ben-Zeev, Vaidutis Kučinskas, Hirofumi Kashii, Leslie Granger, Florence Demurger, Adi Vaknin-Dembinsky, Androu Waheeb, Takeshi Mizuguchi, Lip H. Moey, Urania Kotzaeridou, Frédérique Béna, Fernando Kok, Timothy Blake Palculict, Yasmin Hamzavi Abedi, Satoko Miyatake, Anne-Sophie Denommé-Pichon, Linda Manwaring, Laura Elena Orec, Laurens Wiel, Han G. Brunner, Sylvie Odent, Eric Vilain, Linh Tran, Simon E. Fisher, Emmanuèlle C. Délot, Vidya Krishnamurthy, Rebecca C. Spillmann, Hilary Coon, Shelagh Joss, Hui B. Chew, Matias Wagner, David A. Dyment, Kirsty McWalter, Michael W. Parker, Adam Jackson, Margje Sinnema, Pengfei Liu, Elke de Boer, Alma Kuechler, Christoffer Nellåker, Christian Gilissen, Yasuo Hachiya, Marcia C. Willing, Shivarajan M. Amudhavalli, Alexander P.A. Stegmann, Ange-Line Bruel, Siddharth Banka, Joery den Hoed, Vardiella Meiner, Rosalyn Jewell, Britton D Zuccarelli, Alexander J. M. Dingemans, Kelly L. Jones, Anja A. Kattentidt-Mouravieva, Matthew Osmond, Orly Elpeleg, Andrea K. Petersen, Nicolas Guex, Dianne F. Newbury, Jill A. Rosenfeld, Alexandre Reymond, Mohamad A. Mikati, Tjitske Kleefstra, Lisenka E.L.M. Vissers, Naomichi Matsumoto, Vincent R. Bonagura, Loreta Cimbalistienė, Benoît Mazel, Hayley S. Mountford, Isabelle Thiffault, Rolph Pfundt, Ruth Newbury-Ecob, Teresa Santiago-Sim, Alinoë Lavillaureix, Eglė Preikšaitienė, Jacqueline Chrast, Toshiyuki Itai, Norine Voisin, Usha Kini, Emmanuelle Ranza, Caitlin Schwager, Brooke Horist, Samantha A. Schrier Vergano, Jennifer Hanebeck, Juliana H. Vedovato-dos-Santos, Mitsuhiro Kato, Theresa Brunet, Lot Snijders Blok, Jayne Y. Hehir-Kwa, Shehla Mohammed, Benjamin Haber, Hagar Mor-Shaked, Laurence Faivre, Dian Donnai, Max Planck Institute for Psycholinguistics, Max-Planck-Gesellschaft, Université de Lausanne = University of Lausanne (UNIL), Children's Mercy Hospital [Kansas City], University of Manchester [Manchester], Lipides - Nutrition - Cancer [Dijon - U1231] (LNC), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon), Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), CHU Pontchaillou [Rennes], Centre de référence Maladies Rares CLAD-Ouest [Rennes], Radboud University [Nijmegen], Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, Nederlandse Organisatie voor Wetenschappelijk Onderzoek, University of Lausanne (UNIL), Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de la Santé et de la Recherche Médicale (INSERM), Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Radboud university [Nijmegen], The DDD study, RS: GROW - R4 - Reproductive and Perinatal Medicine, Klinische Genetica, and MUMC+: DA Klinische Genetica (5)
- Subjects
0301 basic medicine ,Male ,Models, Molecular ,MISSENSE MUTATIONS ,CHROMATIN ,Transcription, Genetic ,Cell ,Medizin ,Disease ,Haploinsufficiency ,medicine.disease_cause ,0302 clinical medicine ,Missense mutation ,de novo variants ,Genetics (clinical) ,INTERLEUKIN-2 ,seizures ,Genetics ,0303 health sciences ,Mutation ,Chromatin binding ,neurodevelopmental disorders ,Metabolic Disorders Radboud Institute for Molecular Life Sciences [Radboudumc 6] ,SATB1 ,Phenotype ,medicine.anatomical_structure ,intellectual disability ,Female ,teeth abnormalities ,Protein Binding ,Neuroinformatics ,EXPRESSION ,GENES ,Mutation, Missense ,Biology ,BINDING PROTEIN ,REGION ,03 medical and health sciences ,Protein Domains ,Report ,medicine ,HPO-based analysis ,Humans ,Genetic Association Studies ,Hpo-based Analysis ,Satb1 ,Cell-based Functional Assays ,De Novo Variants ,Intellectual Disability ,Neurodevelopmental Disorders ,Seizures ,Teeth Abnormalities ,030304 developmental biology ,[SDV.GEN]Life Sciences [q-bio]/Genetics ,Neurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7] ,Matrix Attachment Region Binding Proteins ,030104 developmental biology ,Nanomedicine Radboud Institute for Molecular Life Sciences [Radboudumc 19] ,030217 neurology & neurosurgery ,cell-based functional assays - Abstract
Whereas large-scale statistical analyses can robustly identify disease-gene relationships, they do not accurately capture genotype-phenotype correlations or disease mechanisms. We use multiple lines of independent evidence to show that different variant types in a single gene,SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical evaluation of 42 individuals carryingSATB1variants identified overt genotype-phenotype relationships, associated with different pathophysiological mechanisms, established by functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in stronger chromatin binding, increased transcriptional repression and a severe phenotype. Contrastingly, variants predicted to result in haploinsufficiency are associated with a milder clinical presentation. A similarly mild phenotype is observed for individuals with premature protein truncating variants that escape nonsense-mediated decay and encode truncated proteins, which are transcriptionally active but mislocalized in the cell. Our results suggest that in-depth mutation-specific genotype-phenotype studies are essential to capture full disease complexity and to explain phenotypic variability.
168. Bi-allelic loss-of-function variants in TMEM147 cause moderate to profound intellectual disability with facial dysmorphism and pseudo-Pelger-Huët anomaly
- Author
-
Quentin Thomas, Marialetizia Motta, Thierry Gautier, Maha S. Zaki, Andrea Ciolfi, Julien Paccaud, François Girodon, Odile Boespflug-Tanguy, Thomas Besnard, Jennifer Kerkhof, Haley McConkey, Aymeric Masson, Anne-Sophie Denommé-Pichon, Benjamin Cogné, Eva Trochu, Virginie Vignard, Fatima El It, Lance H. Rodan, Mohammad Ayman Alkhateeb, Rami Abou Jamra, Laurence Duplomb, Emilie Tisserant, Yannis Duffourd, Ange-Line Bruel, Adam Jackson, Siddharth Banka, Meriel McEntagart, Anand Saggar, Joseph G. Gleeson, David Sievert, Hyunwoo Bae, Beom Hee Lee, Kisang Kwon, Go Hun Seo, Hane Lee, Anjum Saeed, Nadeem Anjum, Huma Cheema, Salem Alawbathani, Imran Khan, Jorge Pinto-Basto, Joyce Teoh, Jasmine Wong, Umar Bin Mohamad Sahari, Henry Houlden, Kristina Zhelcheska, Melanie Pannetier, Mona A. Awad, Marion Lesieur-Sebellin, Giulia Barcia, Jeanne Amiel, Julian Delanne, Christophe Philippe, Laurence Faivre, Sylvie Odent, Aida Bertoli-Avella, Christel Thauvin, Bekim Sadikovic, Bruno Reversade, Reza Maroofian, Jérôme Govin, Marco Tartaglia, Antonio Vitobello, Lipides - Nutrition - Cancer [Dijon - U1231] (LNC), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Agro Dijon, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Institute for Advanced Biosciences / Institut pour l'Avancée des Biosciences (Grenoble) (IAB), Centre Hospitalier Universitaire [Grenoble] (CHU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Etablissement français du sang - Auvergne-Rhône-Alpes (EFS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Maladies neurodéveloppementales et neurovasculaires (NeuroDiderot (UMR_S_1141 / U1141)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), unité de recherche de l'institut du thorax UMR1087 UMR6291 (ITX), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Nantes Université - UFR de Médecine et des Techniques Médicales (Nantes Univ - UFR MEDECINE), Nantes Université - pôle Santé, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Santé, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), CHU Pontchaillou [Rennes], CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Centre de référence Maladies Rares CLAD-Ouest [Rennes], FHU TRANSLAD (CHU de Dijon), Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon), and This work was supported by grants from Dijon University Hospital, the ISITE-BFC (PIA ANR), and the European Union through the FEDER programs, EJP-RD (NSEuroNET), AIRC (IG21614), and Italian Ministry of Health (5x1000). Sequencing for individual 15 was funded by the Institute for Information and Communications Technology Promotion (IITP) grant from the Korean government (MSIT) (2018-0-00861, Intelligent SW Technology Development for Medical Data Analysis). This study makes use of DECIPHER (http://decipher.sanger.ac.uk), which is funded by the Wellcome (www.ddduk.org/access.html).55 This research was made possible through access to the data and findings generated by the 100KGP. The 100KGP is managed by Genomics England Limited (a wholly owned company of the Department of Health and Social Care). The 100KGP is funded by the National Institute for Health Research and NHS England. The Wellcome Trust, Cancer Research UK, and the Medical Research Council have also funded research infrastructure. The 100KGP uses data provided by individuals and collected by the National Health Service as part of their care and support. Several authors of this publication are members of the European Reference Network for Developmental Anomalies and Intellectual Disability (ERN-ITHACA). The Solve-RD project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 779257.
- Subjects
Cell Nucleus ,[SDV.GEN]Life Sciences [q-bio]/Genetics ,DNA methylation ,Loss of Heterozygosity ,facial dysmorphism ,neurodevelopmental disorder ,Chromatin ,Musculoskeletal Abnormalities ,transcriptomics ,translocon dysfunction ,Pelger-Huët anomaly ,intellectual disability ,Genetics ,LBR ,Humans ,TMEM147 ,nuclear envelope instability ,Child ,Pelger-Huet Anomaly ,Genetics (clinical) - Abstract
International audience; The transmembrane protein TMEM147 has a dual function: first at the nuclear envelope, where it anchors lamin B receptor (LBR) to the inner membrane, and second at the endoplasmic reticulum (ER), where it facilitates the translation of nascent polypeptides within the ribosome-bound TMCO1 translocon complex. Through international data sharing, we identified 23 individuals from 15 unrelated families with bi-allelic TMEM147 loss-of-function variants, including splice-site, nonsense, frameshift, and missense variants. These affected children displayed congruent clinical features including coarse facies, developmental delay, intellectual disability, and behavioral problems. In silico structural analyses predicted disruptive consequences of the identified amino acid substitutions on translocon complex assembly and/or function, and in vitro analyses documented accelerated protein degradation via the autophagy-lysosomal-mediated pathway. Furthermore, TMEM147-deficient cells showed CKAP4 (CLIMP-63) and RTN4 (NOGO) upregulation with a concomitant reorientation of the ER, which was also witnessed in primary fibroblast cell culture. LBR mislocalization and nuclear segmentation was observed in primary fibroblast cells. Abnormal nuclear segmentation and chromatin compaction were also observed in approximately 20% of neutrophils, indicating the presence of a pseudo-Pelger-Huët anomaly. Finally, co-expression analysis revealed significant correlation with neurodevelopmental genes in the brain, further supporting a role of TMEM147 in neurodevelopment. Our findings provide clinical, genetic, and functional evidence that bi-allelic loss-of-function variants in TMEM147 cause syndromic intellectual disability due to ER-translocon and nuclear organization dysfunction.
- Full Text
- View/download PDF
169. Mutation-specific pathophysiological mechanisms define different neurodevelopmental disorders associated with SATB1 dysfunction
- Author
-
den Hoed, J., de Boer, E., Voisin, N., Dingemans, A.J.M., Guex, N., Wiel, L., Nellaker, C., Amudhavalli, S.M., Banka, S., Bena, F.S., Ben-Zeev, B., Bonagura, V.R., Bruel, A.-L., Brunet, T., Brunner, H.G., Chew, H.B., Chrast, J., Cimbalistienė, L., Coon, H., Délot, E.C., Démurger, F., Denommé-Pichon, A.-S., Depienne, C., Donnai, D., Dyment, D.A., Elpeleg, O., Faivre, L., Gilissen, C., Granger, L., Haber, B., Hachiya, Y., Abedi, Y.H., Hanebeck, J., Hehir-Kwa, J.Y., Horist, B., Itai, T., Jackson, A., Jewell, R., Jones, K.L., Joss, S., Kashii, H., Kato, M., Kattentidt-Mouravieva, A.A., Kok, F., Kotzaeridou, U., Krishnamurthy, V., Kučinskas, V., Kuechler, A., Lavillaureix, A., Liu, P., Manwaring, L., Matsumoto, N., Mazel, B., McWalter, K., Meiner, V., Mikati, M.A., Miyatake, S., Mizuguchi, T., Moey, L.H., Mohammed, S., Mor-Shaked, H., Mountford, H., Newbury-Ecob, R., Odent, S., Orec, L., Osmond, M., Palculict, T.B., Parker, M., Petersen, A., Pfundt, R., Preikšaitienė, E., Radtke, K., Ranza, E., Rosenfeld, J.A., Santiago-Sim, T., Schwager, C., Sinnema, M., Blok, L.S., Spillmann, R.C., Stegmann, A.P.A., Thiffault, I., Tran, L., Vaknin-Dembinsky, A., Vedovato-dos-Santos, J.H., Vergano, S.A., Vilain, E., Vitobello, A., Wagner, M., Waheeb, A., Willing, M., Zuccarelli, B., Kini, U., Newbury, D.F., Kleefstra, T., Reymond, A., Fisher, S.E., Vissers, L.E.L.M., den Hoed, J., de Boer, E., Voisin, N., Dingemans, A.J.M., Guex, N., Wiel, L., Nellaker, C., Amudhavalli, S.M., Banka, S., Bena, F.S., Ben-Zeev, B., Bonagura, V.R., Bruel, A.-L., Brunet, T., Brunner, H.G., Chew, H.B., Chrast, J., Cimbalistienė, L., Coon, H., Délot, E.C., Démurger, F., Denommé-Pichon, A.-S., Depienne, C., Donnai, D., Dyment, D.A., Elpeleg, O., Faivre, L., Gilissen, C., Granger, L., Haber, B., Hachiya, Y., Abedi, Y.H., Hanebeck, J., Hehir-Kwa, J.Y., Horist, B., Itai, T., Jackson, A., Jewell, R., Jones, K.L., Joss, S., Kashii, H., Kato, M., Kattentidt-Mouravieva, A.A., Kok, F., Kotzaeridou, U., Krishnamurthy, V., Kučinskas, V., Kuechler, A., Lavillaureix, A., Liu, P., Manwaring, L., Matsumoto, N., Mazel, B., McWalter, K., Meiner, V., Mikati, M.A., Miyatake, S., Mizuguchi, T., Moey, L.H., Mohammed, S., Mor-Shaked, H., Mountford, H., Newbury-Ecob, R., Odent, S., Orec, L., Osmond, M., Palculict, T.B., Parker, M., Petersen, A., Pfundt, R., Preikšaitienė, E., Radtke, K., Ranza, E., Rosenfeld, J.A., Santiago-Sim, T., Schwager, C., Sinnema, M., Blok, L.S., Spillmann, R.C., Stegmann, A.P.A., Thiffault, I., Tran, L., Vaknin-Dembinsky, A., Vedovato-dos-Santos, J.H., Vergano, S.A., Vilain, E., Vitobello, A., Wagner, M., Waheeb, A., Willing, M., Zuccarelli, B., Kini, U., Newbury, D.F., Kleefstra, T., Reymond, A., Fisher, S.E., and Vissers, L.E.L.M.
- Abstract
Whereas large-scale statistical analyses can robustly identify disease-gene relationships, they do not accurately capture genotype-phenotype correlations or disease mechanisms. We use multiple lines of independent evidence to show that different variant types in a single gene, SATB1, cause clinically overlapping but distinct neurodevelopmental disorders. Clinical evaluation of 42 individuals carrying SATB1 variants identified overt genotype-phenotype relationships, associated with different pathophysiological mechanisms, established by functional assays. Missense variants in the CUT1 and CUT2 DNA-binding domains result in stronger chromatin binding, increased transcriptional repression and a severe phenotype. In contrast, variants predicted to result in haploinsufficiency are associated with a milder clinical presentation. A similarly mild phenotype is observed for individuals with premature protein truncating variants that escape nonsense-mediated decay, which are transcriptionally active but mislocalized in the cell. Our results suggest that in-depth mutation-specific genotype-phenotype studies are essential to capture full disease complexity and to explain phenotypic variability.
170. De novo disruption of the proteasome regulatory subunit PSMD12 causes a syndromic neurodevelopmental disorder
- Author
-
Pontificia Universidad Javeriana. Facultad de Medicina. Instituto de Genética Humana, Kúry, Sébastien, Besnard, Thomas, Ebstein, Frédéric, Khan, Tahir N., Gambin, Tomasz, Douglas, Jessica, Bacino, Carlos A., Craigen, William J., Sanders, Stephan J., Lehmann, Andrea, Latypova, Xénia, Khan, Kamal, Pacault, Mathilde, Sacharow, Stephanie, Glaser, Kimberly, Bieth, Eric, Perrin-Sabourin, Laurence, Jacquemont, Marie-Line, Cho, Megan T., Roeder, Elizabeth, Denommé-Pichon, Anne-Sophie, Monaghan, Kristin G., Yuan, Bo, Xia, Fan, Sylvain, Simon, Bonneau, Dominique, Parent, Philippe, Gilbert-Dussardier, Brigitte, Odent, Sylvie, Toutain, Annick, Pasquier, Laurent, Barbouth, Deborah, Shaw, Chad A., Patel, Ankita, Smith, Janice L., Bi, Weimin, Schmitt, Sébastien, Deb, Wallid, Nizon, Mathilde, Mercier, Sandra, Vincent, Marie, Rooryck, Caroline, Malan, Valérrie, Briceño, Ignacio, Gómez, Alberto, Nugent, Kimberly M., Gibson, James B., Cogné, Benjamin, Lupski, James R., Stessman, Holly A. F., Eichler, Evan E., Retterer, Kyle, Yang, Yaping, Redon, Richard, Katsanis, Nicholas, Rosenfeld, Jill A., Kloetzel, Peter-Michael, Golzio, Christelle, Bézieau, Stéphane, Stankiewicz, Pawe, Isidor, Bertrand, Pontificia Universidad Javeriana. Facultad de Medicina. Instituto de Genética Humana, Kúry, Sébastien, Besnard, Thomas, Ebstein, Frédéric, Khan, Tahir N., Gambin, Tomasz, Douglas, Jessica, Bacino, Carlos A., Craigen, William J., Sanders, Stephan J., Lehmann, Andrea, Latypova, Xénia, Khan, Kamal, Pacault, Mathilde, Sacharow, Stephanie, Glaser, Kimberly, Bieth, Eric, Perrin-Sabourin, Laurence, Jacquemont, Marie-Line, Cho, Megan T., Roeder, Elizabeth, Denommé-Pichon, Anne-Sophie, Monaghan, Kristin G., Yuan, Bo, Xia, Fan, Sylvain, Simon, Bonneau, Dominique, Parent, Philippe, Gilbert-Dussardier, Brigitte, Odent, Sylvie, Toutain, Annick, Pasquier, Laurent, Barbouth, Deborah, Shaw, Chad A., Patel, Ankita, Smith, Janice L., Bi, Weimin, Schmitt, Sébastien, Deb, Wallid, Nizon, Mathilde, Mercier, Sandra, Vincent, Marie, Rooryck, Caroline, Malan, Valérrie, Briceño, Ignacio, Gómez, Alberto, Nugent, Kimberly M., Gibson, James B., Cogné, Benjamin, Lupski, James R., Stessman, Holly A. F., Eichler, Evan E., Retterer, Kyle, Yang, Yaping, Redon, Richard, Katsanis, Nicholas, Rosenfeld, Jill A., Kloetzel, Peter-Michael, Golzio, Christelle, Bézieau, Stéphane, Stankiewicz, Pawe, and Isidor, Bertrand
171. Genome-wide variant calling in reanalysis of exome sequencing data uncovered a pathogenic TUBB3 variant.
- Author
-
de Boer, Elke, Yaldiz, Burcu, Denommé-Pichon, Anne-Sophie, Matalonga, Leslie, Laurie, Steve, Steyaert, Wouter, de Reuver, Rick, Gilissen, Christian, Kwint, Michael, Pfundt, Rolph, Verloes, Alain, Willemsen, Michèl A.A.P., de Vries, Bert B.A., Vitobello, Antonio, Kleefstra, Tjitske, and Vissers, Lisenka E.L.M.
- Subjects
- *
BRAIN abnormalities , *AMINO acid sequence , *DEVELOPMENTAL delay , *INTELLECTUAL disabilities , *BRAIN imaging , *MISSENSE mutation , *SHORT stature - Abstract
Almost half of all individuals affected by intellectual disability (ID) remain undiagnosed. In the Solve-RD project, exome sequencing (ES) datasets from unresolved individuals with (syndromic) ID (n = 1,472 probands) are systematically reanalyzed, starting from raw sequencing files, followed by genome-wide variant calling and new data interpretation. This strategy led to the identification of a disease-causing de novo missense variant in TUBB3 in a girl with severe developmental delay, secondary microcephaly, brain imaging abnormalities, high hypermetropia, strabismus and short stature. Interestingly, the TUBB3 variant could only be identified through reanalysis of ES data using a genome-wide variant calling approach, despite being located in protein coding sequence. More detailed analysis revealed that the position of the variant within exon 5 of TUBB3 was not targeted by the enrichment kit, although consistent high-quality coverage was obtained at this position, resulting from nearby targets that provide off-target coverage. In the initial analysis, variant calling was restricted to the exon targets ± 200 bases, allowing the variant to escape detection by the variant calling algorithm. This phenomenon may potentially occur more often, as we determined that 36 established ID genes have robust off-target coverage in coding sequence. Moreover, within these regions, for 17 genes (likely) pathogenic variants have been identified before. Therefore, this clinical report highlights that, although compute-intensive, performing genome-wide variant calling instead of target-based calling may lead to the detection of diagnostically relevant variants that would otherwise remain unnoticed. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
172. Variant-specific changes in RAC3 function disrupt corticogenesis in neurodevelopmental phenotypes
- Author
-
Scala, M., Nishikawa, M., Ito, H., Tabata, H., Khan, T., Accogli, A., Davids, L., Ruiz, A., Chiurazzi, Pietro, Cericola, G., Schulte, B., Monaghan, K. G., Begtrup, A., Torella, A., Pinelli, M., Denomme-Pichon, A. -S., Vitobello, A., Racine, C., Mancardi, M. M., Kiss, C., Guerin, A., Wu, W., Vila, E. G., Mak, B. C., Martinez-Agosto, J. A., Gorin, M. B., Duz, B., Bayram, Y., Carvalho, C. M. B., Vengoechea, J. E., Chitayat, D., Tan, T. Y., Callewaert, B., Kruse, B., Bird, L. M., Faivre, L., Zollino, Marcella, Biskup, S., Striano, P., Nigro, V., Severino, M., Capra, V., Costain, G., Nagata, K. -I., Brown, G., Butte, M. J., Dell'Angelica, E. C., Dorrani, N., Douine, E. D., Fogel, B. L., Gutierrez, I., Huang, A., Krakow, D., Lee, H., Loo, S. K., Martin, M. G., Mcgee, E., Nelson, S. F., Nieves-Rodriguez, S., Palmer, C. G. S., Papp, J. C., Parker, N. H., Renteria, G., Sinsheimer, J. S., Wan, J., Wang, L. -K., Perry, K. W., Brunetti-Pierri, N., Casari, G., Cappuccio, G., Musacchia, F., Mutarelli, M., Carrella, D., Vitiello, G., Parenti, G., Leuzzi, V., Selicorni, A., Maitz, S., Banfi, S., Montomoli, M., Milani, D., Romano, C., Tummolo, A., De Brasi, D., Coppola, A., Santoro, C., Peron, A., Pantaleoni, C., Castello, R., D'Arrigo, S., Scala, Marcello, Nishikawa, Masashi, Ito, Hidenori, Tabata, Hidenori, Khan, Tayyaba, Accogli, Andrea, Davids, Laura, Ruiz, Anna, Chiurazzi, Pietro, Cericola, Gabriella, Schulte, Björn, Monaghan, Kristin G, Begtrup, Amber, Torella, Annalaura, Pinelli, Michele, Denommé-Pichon, Anne Sophie, Vitobello, Antonio, Racine, Caroline, Mancardi, Maria Margherita, Kiss, Courtney, Guerin, Andrea, Wu, Wendy, Gabau Vila, Elisabeth, Mak, Bryan C, Martinez-Agosto, Julian A, Gorin, Michael B, Duz, Bugrahan, Bayram, Yavuz, Carvalho, Claudia M B, Vengoechea, Jaime E, Chitayat, David, Tan, Tiong Yang, Callewaert, Bert, Kruse, Bernd, Bird, Lynne M, Faivre, Laurence, Zollino, Marcella, Biskup, Saskia, Striano, Pasquale, Nigro, Vincenzo, Severino, Mariasavina, Capra, Valeria, Costain, Gregory, Nagata, Koh Ichi, and Nagata, Koh-Ichi
- Subjects
brain development ,Settore MED/03 - GENETICA MEDICA ,Medical and Health Sciences ,Telethon Undiagnosed Diseases Program ,Mice ,Neurodevelopmental Disorder ,Medicine and Health Sciences ,Animals ,Humans ,2.1 Biological and endogenous factors ,Aetiology ,Neurons ,Pediatric ,neuronal migration ,Neurology & Neurosurgery ,Animal ,axon guidance ,Psychology and Cognitive Sciences ,p21-Activated Kinase ,Neurosciences ,Biology and Life Sciences ,Undiagnosed Diseases Network ,Neuron ,rac GTP-Binding Proteins ,Brain Disorders ,RAC3 ,Phenotype ,p21-Activated Kinases ,Neurodevelopmental Disorders ,small GTPase ,Neurological ,Congenital Structural Anomalies ,Neurology (clinical) ,Human - Abstract
Variants in RAC3, encoding a small GTPase RAC3 which is critical for the regulation of actin cytoskeleton and intracellular signal transduction, are associated with a rare neurodevelopmental disorder with structural brain anomalies and facial dysmorphism. We investigated a cohort of 10 unrelated participants presenting with global psychomotor delay, hypotonia, behavioural disturbances, stereotyped movements, dysmorphic features, seizures and musculoskeletal abnormalities. MRI of brain revealed a complex pattern of variable brain malformations, including callosal abnormalities, white matter thinning, grey matter heterotopia, polymicrogyria/dysgyria, brainstem anomalies and cerebellar dysplasia. These patients harboured eight distinct de novo RAC3 variants, including six novel variants (NM_005052.3): c.34G > C p.G12R, c.179G > A p.G60D, c.186_188delGGA p.E62del, c.187G > A p.D63N, c.191A > G p.Y64C and c.348G > C p.K116N. We then examined the pathophysiological significance of these novel and previously reported pathogenic variants p.P29L, p.P34R, p.A59G, p.Q61L and p.E62K. In vitro analyses revealed that all tested RAC3 variants were biochemically and biologically active to variable extent, and exhibited a spectrum of different affinities to downstream effectors including p21-activated kinase 1. We then focused on the four variants p.Q61L, p.E62del, p.D63N and p.Y64C in the Switch II region, which is essential for the biochemical activity of small GTPases and also a variation hot spot common to other Rho family genes, RAC1 and CDC42. Acute expression of the four variants in embryonic mouse brain using in utero electroporation caused defects in cortical neuron morphology and migration ending up with cluster formation during corticogenesis. Notably, defective migration by p.E62del, p.D63N and p.Y64C were rescued by a dominant negative version of p21-activated kinase 1. Our results indicate that RAC3 variants result in morphological and functional defects in cortical neurons during brain development through variant-specific mechanisms, eventually leading to heterogeneous neurodevelopmental phenotypes. Scala et al. identify six de novo variants in RAC3, which encodes a small GTPase, in 10 unrelated subjects with neurodevelopmental phenotypes. In vivo and in vitro analyses in mice reveal that RAC3 variants cause morpho-functional defects in cortical neurons through variant-specific mechanisms, disrupting corticogenesis.
- Published
- 2022
173. De Novo Disruption of the Proteasome Regulatory Subunit PSMD12 Causes a Syndromic Neurodevelopmental Disorder.
- Author
-
Küry, Sébastien, Besnard, Thomas, Ebstein, Frédéric, Khan, Tahir N., Gambin, Tomasz, Douglas, Jessica, Bacino, Carlos A., Sanders, Stephan J., Lehmann, Andrea, Latypova, Xénia, Khan, Kamal, Pacault, Mathilde, Sacharow, Stephanie, Glaser, Kimberly, Bieth, Eric, Perrin-Sabourin, Laurence, Jacquemont, Marie-Line, Cho, Megan T., Roeder, Elizabeth, and Denommé-Pichon, Anne-Sophie
- Subjects
- *
PROTEASOMES , *NEURODEGENERATION , *POINT mutation (Biology) , *CATALYTIC activity , *DELETION mutation , *GENETICS - Abstract
Degradation of proteins by the ubiquitin-proteasome system (UPS) is an essential biological process in the development of eukaryotic organisms. Dysregulation of this mechanism leads to numerous human neurodegenerative or neurodevelopmental disorders. Through a multi-center collaboration, we identified six de novo genomic deletions and four de novo point mutations involving PSMD12 , encoding the non-ATPase subunit PSMD12 (aka RPN5) of the 19S regulator of 26S proteasome complex, in unrelated individuals with intellectual disability, congenital malformations, ophthalmologic anomalies, feeding difficulties, deafness, and subtle dysmorphic facial features. We observed reduced PSMD12 levels and an accumulation of ubiquitinated proteins without any impairment of proteasome catalytic activity. Our PSMD12 loss-of-function zebrafish CRISPR/Cas9 model exhibited microcephaly, decreased convolution of the renal tubules, and abnormal craniofacial morphology. Our data support the biological importance of PSMD12 as a scaffolding subunit in proteasome function during development and neurogenesis in particular; they enable the definition of a neurodevelopmental disorder due to PSMD12 variants, expanding the phenotypic spectrum of UPS-dependent disorders. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
174. Correction: A MT-TL1 variant identified by whole exome sequencing in an individual with intellectual disability, epilepsy, and spastic tetraparesis (European Journal of Human Genetics, (2021), 29, 9, (1359-1368), 10.1038/s41431-021-00900-2)
- Author
-
de Boer, Elke, Ockeloen, Charlotte W., Matalonga, Leslie, Horvath, Rita, Cohen, Enzo, Nelson, Isabelle, Rodenburg, Richard J., Coenen, Marieke J. H., Janssen, Mirian, Henssen, Dylan, Gilissen, Christian, Steyaert, Wouter, Paramonov, Ida, Trimouille, Aurelien, Kleefstra, Tjitske, Verloes, Alain, Vissers, Lisenka E. L. M., Radboud University Medical Center [Nijmegen], Institute of Environmental Science and Technology [Barcelona] (ICTA), Universitat Autònoma de Barcelona (UAB), University of Cambridge [UK] (CAM), Centre de recherche en Myologie – U974 SU-INSERM, Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU), Laboratoire Maladies Rares: Génétique et Métabolisme (Bordeaux) (U1211 INSERM/MRGM), Université de Bordeaux (UB)-Groupe hospitalier Pellegrin-Institut National de la Santé et de la Recherche Médicale (INSERM), CHU Bordeaux [Bordeaux], Hôpital Robert Debré, Maladies neurodéveloppementales et neurovasculaires (NeuroDiderot (UMR_S_1141 / U1141)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), Enzo Cohen, Isabel Cuesta, Daniel Danis, Anne-Sophie Denommé-Pichon, Yannis Duffourd, Christian Gilissen, Mridul Johari, Steven Laurie, Shuang Li, Leslie Matalonga, Isabelle Nelson, Sophia Peters, Ida Paramonov, Sivakumar Prasanth, Peter Robinson, Karolis Sablauskas, Marco Savarese, Wouter Steyaert, Ana Töpf, Joeri K van der Velde, Antonio Vitobello, Siddharth Banka, Elisa Benetti, Giorgio Casari, Andrea Ciolfi, Jill Clayton-Smith, Bruno Dallapiccola, Elke de Boer, Laurence Faivre, Tobias B Haack, Anna Hammarsjö, Marketa Havlovicova, Alexander Hoischen, Anne Hugon, Adam Jackson, Tjitske Kleefstra, Anna Lindstrand, Estrella López-Martín, Milan Macek Jr, Vicenzo Nigro, Ann Nordgren, Maria Pettersson, Michele Pinelli, Simone Pizzi, Manuel Posada, Francesca Clementina Radio, Alessandra Renieri, Caroline Rooryck, Lukas Ryba, Martin Schwarz, Marco Tartaglia, Christel Thauvin, Annalaura Torella, Alain Verloes, Lisenka Vissers, Klea Vyshka, Birte Zurek, Admin, Oskar, and Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP)
- Subjects
[SDV.MHEP] Life Sciences [q-bio]/Human health and pathology ,ComputingMilieux_MISCELLANEOUS ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology - Abstract
International audience; No abstract available
- Published
- 2021
175. Valeur ajoutée d'une réanalyse de données de séquençage d'un panel de gènes de déficience intellectuelle
- Author
-
Felici, Charlotte, Université de Lorraine (UL), Université de Lorraine, Anne-Sophie Denommé-Pichon, and Jean-Louis Merlin
- Subjects
Déficience intellectuelle ,Dissertation universitaire ,Séquençage nucléotidique à haut débit ,Séquençage à haut débit ,Thèse d'exercice de pharmacie ,[SDV.SP]Life Sciences [q-bio]/Pharmaceutical sciences - Abstract
La DI est un trouble neuro-développemental hétérogène dont une large proportion est due à des variants rares. Aujourd'hui, près de 30 % des DI restent sans diagnostic moléculaire. L'analyse d'un panel de 446 gènes de DI a été effectuée chez 66 individus au laboratoire de génétique du CHRU de Nancy et a permis de résoudre 22 cas (33 %). Les 44 individus restant sans diagnostic étiologique font l'objet d'une réanalyse qui est le sujet de ce travail. Il s'agit de réinterpréter les variants identifiés précédemment en tenant compte de la littérature actuelle. L'objectif est triple : évaluer la valeur ajoutée d'une réanalyse de variants, résoudre de nouveaux cas et sélectionner parmi les individus restant sans diagnostic moléculaire des candidats pour l'inclusion dans le projet INDEXES (INtellectual Disability EXploration by Exome Sequencing) visant à explorer 10 sujets atteints de DI sévère par séquençage exomique en trio. Aucun nouveau cas n'est résolu avec cette réinterprétation mais quatre individus sans diagnostic moléculaire sont identifiés comme de très bons candidats pour une inclusion dans INDEXES. De nombreuses hypothèses expliquent l'absence de nouveaux diagnostics lors de la réanalyse mais il semble que la réinterprétation des variants en sortie d'un même pipeline bioinformatique, ainsi que le nombre de gènes limités inclus dans le panel constituent les principales limites pour une réanalyse efficace. En conclusion, compte-tenu du temps nécessaire et du rendement nul, la valeur d'une réinterprétation de variants identifiés par séquençage d'un panel de gènes de DI, à la seule lumière de la littérature actualisée, à un an environ, n'est pas démontrée.
- Published
- 2018
176. Biallelic null variants in PNPLA8 cause microcephaly by reducing the number of basal radial glia.
- Author
-
Nakamura Y, Shimada IS, Maroofian R, Falabella M, Zaki MS, Fujimoto M, Sato E, Takase H, Aoki S, Miyauchi A, Koshimizu E, Miyatake S, Arioka Y, Honda M, Higashi T, Miya F, Okubo Y, Ogawa I, Scardamaglia A, Miryounesi M, Alijanpour S, Ahmadabadi F, Herkenrath P, Dafsari HS, Velmans C, Al Balwi M, Vitobello A, Denommé-Pichon AS, Jeanne M, Civit A, Abdel-Hamid MS, Naderi H, Darvish H, Bakhtiari S, Kruer MC, Carroll CJ, Ghayoor Karimiani E, Khailany RA, Abdulqadir TA, Ozaslan M, Bauer P, Zifarelli G, Seifi T, Zamani M, Al Alam C, Alvi JR, Sultan T, Efthymiou S, Pope SAS, Haginoya K, Matsunaga T, Osaka H, Matsumoto N, Ozaki N, Ohkawa Y, Oki S, Tsunoda T, Pitceathly RDS, Taketomi Y, Houlden H, Murakami M, Kato Y, and Saitoh S
- Subjects
- Adolescent, Child, Child, Preschool, Female, Humans, Infant, Male, Induced Pluripotent Stem Cells metabolism, Lipase genetics, Microcephaly genetics, Microcephaly pathology, Neuroglia pathology, Neuroglia metabolism, Phospholipases A2, Calcium-Independent genetics, Phospholipases A2, Calcium-Independent metabolism
- Abstract
Patatin-like phospholipase domain-containing lipase 8 (PNPLA8), one of the calcium-independent phospholipase A2 enzymes, is involved in various physiological processes through the maintenance of membrane phospholipids. Biallelic variants in PNPLA8 have been associated with a range of paediatric neurodegenerative disorders. However, the phenotypic spectrum, genotype-phenotype correlations and the underlying mechanisms are poorly understood. Here, we newly identified 14 individuals from 12 unrelated families with biallelic ultra-rare variants in PNPLA8 presenting with a wide phenotypic spectrum of clinical features. Analysis of the clinical features of current and previously reported individuals (25 affected individuals across 20 families) showed that PNPLA8-related neurological diseases manifest as a continuum ranging from variable developmental and/or degenerative epileptic-dyskinetic encephalopathy to childhood-onset neurodegeneration. We found that complete loss of PNPLA8 was associated with the more profound end of the spectrum, with congenital microcephaly. Using cerebral organoids generated from human induced pluripotent stem cells, we found that loss of PNPLA8 led to developmental defects by reducing the number of basal radial glial cells and upper-layer neurons. Spatial transcriptomics revealed that loss of PNPLA8 altered the fate specification of apical radial glial cells, as reflected by the enrichment of gene sets related to the cell cycle, basal radial glial cells and neural differentiation. Neural progenitor cells lacking PNPLA8 showed a reduced amount of lysophosphatidic acid, lysophosphatidylethanolamine and phosphatidic acid. The reduced number of basal radial glial cells in patient-derived cerebral organoids was rescued, in part, by the addition of lysophosphatidic acid. Our data suggest that PNPLA8 is crucial to meet phospholipid synthetic needs and to produce abundant basal radial glial cells in human brain development., (© The Author(s) 2024. Published by Oxford University Press on behalf of the Guarantors of Brain.)
- Published
- 2024
- Full Text
- View/download PDF
177. Developmental and epileptic encephalopathy 56 due to YWHAG variants: 12 new cases and review of the literature.
- Author
-
Amato ME, Balsells S, Martorell L, Alcalá San Martín A, Ansell K, Børresen ML, Johnson H, Korff C, Garcia-Tarodo S, Lefranc J, Denommé-Pichon AS, Sarrazin E, Szabo NZ, Saraiva JM, Wicher D, Goverde A, Bindels-de Heus KGCB, Barakat TS, and Ortigoza-Escobar JD
- Abstract
Background and Objectives: Developmental and epileptic encephalopathy 56 (DEE-56) is caused by pathogenic variants in YWHAG and is characterized by early-onset epilepsy and neurodevelopmental delay. This study reports on a cohort of DEE-56 individuals, correlating antiseizure medication usage and comorbidities, to aid in understanding disease evolution., Methods: We analyzed data from thirty-nine individuals aged 3-40 years with YWHAG variants, including 12 previously unreported individuals (2 of these with recurrent distal 7q11.23 deletions) and 27 previously published cases (21 families, including 3 adult individuals reported in a family case). Our assessments encompassed clinical, radiological, and genetic evaluations. All procedures adhered to standardized protocols for patient approvals, registrations, and data collection., Results: Individuals with YWHAG variants exhibited variable psychomotor delay, with the majority experiencing mild intellectual disability. Early-onset seizures, particularly febrile seizures, were common, with various seizure types reported. Valproic acid has emerged as an effective antiseizure medication. Movement disorders were present in a subset of individuals, primarily manifesting as ataxia and tremor. Comorbidities such as autism spectrum disorders and attention deficit-hyperreactivity disorder were observed in a proportion of individuals. We identified a novel YWHAG variant (c.634_645del/p.Asn212_Ser215del) and expanded the genotypic spectrum of the disease., Conclusions: We provide insights into the clinical, radiological, and genetic features of YWHAG-related epileptic encephalopathy. Despite mild clinical symptoms, affected individuals face challenges in daily functioning, underscoring the need for comprehensive care. Valproic acid has been used for seizure control with variable results., Competing Interests: Declaration of competing interest None of the authors has any conflict of interest to disclose., (Copyright © 2024 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
178. Expanding MNS1 Heterotaxy Phenotype.
- Author
-
Maraval J, Delahaye-Duriez A, Racine C, Bruel AL, Denommé-Pichon AS, Gaudillat L, Thauvin-Robinet C, Lucain M, Satre V, Coutton C, de Sainte Agathe JM, Keren B, and Faivre L
- Abstract
MNS1 (meiosis-specific nuclear structural protein-1 gene) encodes a structural protein implicated in motile ciliary function and sperm flagella assembly. To date, two different homozygous MNS1 variants have been associated with autosomal recessive visceral heterotaxy (MIM#618948). A French individual was identified with compound heterozygous variants in the MNS1 gene. A collaborative call was proposed via GeneMatcher to describe new cases with this rare syndrome, leading to the identification of another family. The first patient was a female presenting complete situs inversus and unusual symptoms, including severe myopia and dental agenesis of 10 permanent teeth. She was found to carry compound heterozygous frameshift and nonsense variants in MNS1. The second and third patients were sibling fetuses with homozygous in-frame deletion variants in MNS1 and homozygous missense variants in GLDN. Autopsies revealed a complex prenatal malformation syndrome. We add here new cases with the ultra-rare MNS1-related disorder and provide a review of all published individuals., (© 2024 The Author(s). American Journal of Medical Genetics Part A published by Wiley Periodicals LLC.)
- Published
- 2024
- Full Text
- View/download PDF
179. Expectations, needs and mid-term outcomes in people accessing to secondary findings from ES: 1st French mixed study (FIND Study).
- Author
-
Viora-Dupont E, Robert F, Chassagne A, Pélissier A, Staraci S, Sanlaville D, Edery P, Lesca G, Putoux A, Pons L, Cadenes A, Baurand A, Sawka C, Bertolone G, Spetchian M, Yousfi M, Salvi D, Gautier E, Vitobello A, Denommé-Pichon AS, Bruel AL, Tran Mau-Them F, Faudet A, Keren B, Labalme A, Chatron N, Abel C, Dupuis-Girod S, Poisson A, Buratti J, Mignot C, Afenjar A, Whalen S, Charles P, Heide S, Mouthon L, Moutton S, Sorlin A, Nambot S, Briffaut AS, Asensio ML, Philippe C, Thauvin-Robinet C, Héron D, Rossi M, Meunier-Bellard N, Gargiulo M, Peyron C, Binquet C, and Faivre L
- Subjects
- Humans, Female, Male, Adult, Exome Sequencing, France, Parents psychology, Child, Genetic Testing, Incidental Findings, Adolescent, Developmental Disabilities genetics, Developmental Disabilities psychology, Developmental Disabilities diagnosis, Child, Preschool, Genetic Counseling psychology
- Abstract
Generation and subsequently accessibility of secondary findings (SF) in diagnostic practice is a subject of debate around the world and particularly in Europe. The French FIND study has been set up to assess patient/parent expectations regarding SF from exome sequencing (ES) and to collect their real-life experience until 1 year after the delivery of results. 340 patients who had ES for undiagnosed developmental disorders were included in this multicenter mixed study (quantitative N = 340; qualitative N = 26). Three groups of actionable SF were rendered: predisposition to late-onset actionable diseases; genetic counseling; pharmacogenomics. Participants expressed strong interest in obtaining SF and a high satisfaction level when a SF is reported. The medical actionability of the SF reinforced parents' sense of taking action for their child and was seen as an opportunity. While we observed no serious psychological concerns, we showed that these results could have psychological consequences, in particular for late-onset actionable diseases SF, within families already dealing with rare diseases. This study shows that participants remain in favor of accessing SF despite the potential psychological, care, and lifestyle impacts, which are difficult to anticipate. The establishment of a management protocol, including the support of a multidisciplinary team, would be necessary if national policy allows the reporting of these data., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
180. Correction: Expansion of the neurodevelopmental phenotype of individuals with EEF1A2 variants and genotype-phenotype study.
- Author
-
Paulet A, Bennett-Ness C, Ageorges F, Trost D, Green A, Goudie D, Jewell R, Kraatari-Tiri M, Piard J, Coubes C, Lam W, Lynch SA, Groeschel S, Ramond F, Fluss J, Fagerberg C, Brasch Andersen C, Varvagiannis K, Kleefstra T, Gérard B, Fradin M, Vitobello A, Tenconi R, Denommé-Pichon AS, Vincent-Devulder A, Haack T, Marsh JA, Laulund LW, Grimmel M, Riess A, de Boer E, Padilla-Lopez S, Bakhtiari S, Ostendorf A, Zweier C, Smol T, Willems M, Faivre L, Scala M, Striano P, Bagnasco I, Koboldt D, Iascone M, Suerink M, Kruer MC, Levy J, Verloes A, Abbott CM, and Ruaud L
- Published
- 2024
- Full Text
- View/download PDF
181. Expansion of the neurodevelopmental phenotype of individuals with EEF1A2 variants and genotype-phenotype study.
- Author
-
Paulet A, Bennett-Ness C, Ageorges F, Trost D, Green A, Goudie D, Jewell R, Kraatari-Tiri M, Piard J, Coubes C, Lam W, Lynch SA, Groeschel S, Ramond F, Fluss J, Fagerberg C, Brasch Andersen C, Varvagiannis K, Kleefstra T, Gérard B, Fradin M, Vitobello A, Tenconi R, Denommé-Pichon AS, Vincent-Devulder A, Haack T, Marsh JA, Laulund LW, Grimmel M, Riess A, de Boer E, Padilla-Lopez S, Bakhtiari S, Ostendorf A, Zweier C, Smol T, Willems M, Faivre L, Scala M, Striano P, Bagnasco I, Koboldt D, Iascone M, Suerink M, Kruer MC, Levy J, Verloes A, Abbott CM, and Ruaud L
- Subjects
- Adolescent, Adult, Child, Child, Preschool, Female, Humans, Infant, Male, Epilepsy genetics, Epilepsy pathology, Genetic Association Studies, Intellectual Disability genetics, Intellectual Disability pathology, Neurodevelopmental Disorders genetics, Neurodevelopmental Disorders pathology, Phenotype, Mutation, Missense, Peptide Elongation Factor 1 genetics
- Abstract
Translation elongation factor eEF1A2 constitutes the alpha subunit of the elongation factor-1 complex, responsible for the enzymatic binding of aminoacyl-tRNA to the ribosome. Since 2012, 21 pathogenic missense variants affecting EEF1A2 have been described in 42 individuals with a severe neurodevelopmental phenotype including epileptic encephalopathy and moderate to profound intellectual disability (ID), with neurological regression in some patients. Through international collaborative call, we collected 26 patients with EEF1A2 variants and compared them to the literature. Our cohort shows a significantly milder phenotype. 83% of the patients are walking (vs. 29% in the literature), and 84% of the patients have language skills (vs. 15%). Three of our patients do not have ID. Epilepsy is present in 63% (vs. 93%). Neurological examination shows a less severe phenotype with significantly less hypotonia (58% vs. 96%), and pyramidal signs (24% vs. 68%). Cognitive regression was noted in 4% (vs. 56% in the literature). Among individuals over 10 years, 56% disclosed neurocognitive regression, with a mean age of onset at 2 years. We describe 8 novel missense variants of EEF1A2. Modeling of the different amino-acid sites shows that the variants associated with a severe phenotype, and the majority of those associated with a moderate phenotype, cluster within the switch II region of the protein and thus may affect GTP exchange. In contrast, variants associated with milder phenotypes may impact secondary functions such as actin binding. We report the largest cohort of individuals with EEF1A2 variants thus far, allowing us to expand the phenotype spectrum and reveal genotype-phenotype correlations., (© 2024. The Author(s), under exclusive licence to European Society of Human Genetics.)
- Published
- 2024
- Full Text
- View/download PDF
182. Extending the clinical spectrum of X-linked Tonne-Kalscheuer syndrome (TOKAS): new insights from the fetal perspective.
- Author
-
Cuinat S, Quélin C, Effray C, Dubourg C, Le Bouar G, Cabaret-Dufour AS, Loget P, Proisy M, Sauvestre F, Sarreau M, Martin-Berenguer S, Beneteau C, Naudion S, Michaud V, Arveiler B, Trimouille A, Macé P, Sigaudy S, Glazunova O, Torrents J, Raymond L, Saint-Frison MH, Attié-Bitach T, Lefebvre M, Capri Y, Bourgon N, Thauvin-Robinet C, Tran Mau-Them F, Bruel AL, Vitobello A, Denommé-Pichon AS, Faivre L, Brehin AC, Goldenberg A, Patrier-Sallebert S, Perani A, Dauriat B, Bourthoumieu S, Yardin C, Marquet V, Barnique M, Fiorenza-Gasq M, Marey I, Tournadre D, Doumit R, Nugues F, Barakat TS, Bustos F, Jaillard S, Launay E, Pasquier L, and Odent S
- Subjects
- Humans, Male, Female, Fetus pathology, Mutation, Phenotype, Prenatal Diagnosis, Exome Sequencing, Genetic Association Studies methods, Abnormalities, Multiple genetics, Abnormalities, Multiple pathology, Abnormalities, Multiple diagnosis, Pedigree, Pregnancy, Genetic Diseases, X-Linked genetics, Genetic Diseases, X-Linked pathology, Genetic Diseases, X-Linked diagnosis
- Abstract
Introduction: Tonne-Kalscheuer syndrome (TOKAS) is a recessive X-linked multiple congenital anomaly disorder caused by RLIM variations. Of the 41 patients reported, only 7 antenatal cases were described., Method: After the antenatal diagnosis of TOKAS by exome analysis in a family followed for over 35 years because of multiple congenital anomalies in five male fetuses, a call for collaboration was made, resulting in a cohort of 11 previously unpublished cases., Results: We present a TOKAS antenatal cohort, describing 11 new cases in 6 French families. We report a high frequency of diaphragmatic hernia (9 of 11), differences in sex development (10 of 11) and various visceral malformations. We report some recurrent dysmorphic features, but also pontocerebellar hypoplasia, pre-auricular skin tags and olfactory bulb abnormalities previously unreported in the literature. Although no clear genotype-phenotype correlation has yet emerged, we show that a recurrent p.(Arg611Cys) variant accounts for 66% of fetal TOKAS cases. We also report two new likely pathogenic variants in RLIM , outside of the two previously known mutational hotspots., Conclusion: Overall, we present the first fetal cohort of TOKAS, describe the clinical features that made it a recognisable syndrome at fetopathological examination, and extend the phenotypical spectrum and the known genotype of this rare disorder., Competing Interests: Competing interests: None declared., (© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY. Published by BMJ.)
- Published
- 2024
- Full Text
- View/download PDF
183. Prenatal exome sequencing, a powerful tool for improving the description of prenatal features associated with genetic disorders.
- Author
-
Thauvin-Robinet C, Garde A, Delanne J, Racine C, Rousseau T, Simon E, François M, Moutton S, Sylvie O, Quelin C, Morel G, Goldenberg A, Guerrot AM, Vera G, Gruchy N, Colson C, Boute O, Abel C, Putoux A, Amiel J, Guichet A, Isidor B, Deiller C, Wells C, Rooryck C, Legendre M, Francannet C, Dard R, Sigaudy S, Bruel AL, Safraou H, Denommé-Pichon AS, Nambot S, Asensio MH, Binquet C, Duffourd Y, Vitobello A, Philippe C, Faivre L, Tran-Mau-Them F, and Bourgon N
- Abstract
Objective: Prenatal exome sequencing (pES) is now commonly used in clinical practice. It can be used to identifiy an additional diagnosis in around 30% of fetuses with structural defects and normal chromosomal microarray analysis (CMA). However, interpretation remains challenging due to the limited prenatal data for genetic disorders., Method: We conducted an ancillary study including fetuses with pathogenic/likely pathogenic variants identified by trio-pES from the "AnDDI-Prenatome" study. The prenatal phenotype of each patient was categorized as typical, uncommon, or unreported based on the comparison of the prenatal findings with documented findings in the literature and public phenotype-genotype databases (ClinVar, HGMD, OMIM, and Decipher)., Results: Prenatal phenotypes were typical for 38/56 fetuses (67.9%). For the others, genotype-phenotype associations were challenging due to uncommon prenatal features (absence of recurrent hallmark, rare, or unreported). We report the first prenatal features associated with LINS1 and PGM1 variants. In addition, a double diagnosis was identified in three fetuses., Conclusion: Standardizing the description of prenatal features, implementing longitudinal prenatal follow-up, and large-scale collection of prenatal features are essential steps to improving pES data interpretation., (© 2024 The Author(s). Prenatal Diagnosis published by John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
184. A syndromic neurodevelopmental disorder caused by rare variants in PPFIA3.
- Author
-
Paul MS, Michener SL, Pan H, Chan H, Pfliger JM, Rosenfeld JA, Lerma VC, Tran A, Longley MA, Lewis RA, Weisz-Hubshman M, Bekheirnia MR, Bekheirnia N, Massingham L, Zech M, Wagner M, Engels H, Cremer K, Mangold E, Peters S, Trautmann J, Perne C, Mester JL, Guillen Sacoto MJ, Person R, McDonnell PP, Cohen SR, Lusk L, Cohen ASA, Le Pichon JB, Pastinen T, Zhou D, Engleman K, Racine C, Faivre L, Moutton S, Denommé-Pichon AS, Koh HY, Poduri A, Bolton J, Knopp C, Julia Suh DS, Maier A, Toosi MB, Karimiani EG, Maroofian R, Schaefer GB, Ramakumaran V, Vasudevan P, Banos-Pinero B, Pagnamenta AT, Prasad C, Osmond M, Schuhmann S, Vasileiou G, Russ-Hall S, Scheffer IE, Carvill GL, Mefford H, Bacino CA, Lee BH, and Chao 趙孝端 HT
- Published
- 2024
- Full Text
- View/download PDF
185. Further description of two individuals with de novo p.(Glu127Lys) missense variant in the ASCL1 gene.
- Author
-
Malbos M, Wakeling E, Gautier T, Boespflug-Tanguy O, Busby L, Taylor-Miller T, Dudoignon B, Bokov P, Govin J, Grisval M, Rega A, Mourot De Rougemont MG, Aubriot-Lorton MH, Darmency V, Bensignor C, Houzel A, Huet F, Denommé-Pichon AS, Delanne J, Tran Mau-Them F, Bruel AL, Safraou H, Nambot S, Garde A, Philippe C, Duffourd Y, Vitobello A, Faivre L, and Thauvin-Robinet C
- Subjects
- Humans, Basic Helix-Loop-Helix Transcription Factors genetics, Mutation, Mutation, Missense genetics, Phenotype, Homeodomain Proteins genetics, Transcription Factors genetics
- Abstract
Achaete-Scute Family basic-helix-loop-helix (bHLH) Transcription Factor 1 (ASCL1) is a proneural transcription factor involved in neuron development in the central and peripheral nervous system. While initially suspected to contribute to congenital central hypoventilation syndrome-1 (CCHS) with or without Hirschsprung disease (HSCR) in three individuals, its implication was ruled out by the presence, in one of the individuals, of a Paired-like homeobox 2B (PHOX2B) heterozygous polyalanine expansion variant, known to cause CCHS. We report two additional unrelated individuals sharing the same sporadic ASCL1 p.(Glu127Lys) missense variant in the bHLH domain and a common phenotype with short-segment HSCR, signs of dysautonomia, and developmental delay. One has also mild CCHS without polyalanine expansion in PHOX2B, compatible with the diagnosis of Haddad syndrome. Furthermore, missense variants with homologous position in the same bHLH domain in other genes are known to cause human diseases. The description of additional individuals carrying the same variant and similar phenotype, as well as targeted functional studies, would be interesting to further evaluate the role of ASCL1 in neurocristopathies., (© 2024 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
186. Developmental epileptic encephalopathy in DLG4-related synaptopathy.
- Author
-
Kassabian B, Levy AM, Gardella E, Aledo-Serrano A, Ananth AL, Brea-Fernández AJ, Caumes R, Chatron N, Dainelli A, De Wachter M, Denommé-Pichon AS, Dye TJ, Fazzi E, Felt R, Fernández-Jaén A, Fernández-Prieto M, Gantz E, Gasperowicz P, Gil-Nagel A, Gómez-Andrés D, Greiner HM, Guerrini R, Haanpää MK, Helin M, Hoyer J, Hurst ACE, Kallish S, Karkare SN, Khan A, Kleinendorst L, Koch J, Kothare SV, Koudijs SM, Lagae L, Lakeman P, Leppig KA, Lesca G, Lopergolo D, Lusk L, Mackenzie A, Mei D, Møller RS, Pereira EM, Platzer K, Quelin C, Revah-Politi A, Rheims S, Rodríguez-Palmero A, Rossi A, Santorelli F, Seinfeld S, Sell E, Stephenson D, Szczaluba K, Trinka E, Umair M, Van Esch H, van Haelst MM, Veenma DCM, Weber S, Weckhuysen S, Zacher P, Tümer Z, and Rubboli G
- Subjects
- Humans, Retrospective Studies, Muscle Hypotonia, Seizures complications, Electroencephalography methods, Disks Large Homolog 4 Protein genetics, Epilepsy diagnostic imaging, Epilepsy genetics, Epilepsy complications, Brain Diseases genetics, Epilepsy, Generalized complications, Intellectual Disability genetics, Intellectual Disability complications
- Abstract
Objective: The postsynaptic density protein of excitatory neurons PSD-95 is encoded by discs large MAGUK scaffold protein 4 (DLG4), de novo pathogenic variants of which lead to DLG4-related synaptopathy. The major clinical features are developmental delay, intellectual disability (ID), hypotonia, sleep disturbances, movement disorders, and epilepsy. Even though epilepsy is present in 50% of the individuals, it has not been investigated in detail. We describe here the phenotypic spectrum of epilepsy and associated comorbidities in patients with DLG4-related synaptopathy., Methods: We included 35 individuals with a DLG4 variant and epilepsy as part of a multicenter study. The DLG4 variants were detected by the referring laboratories. The degree of ID, hypotonia, developmental delay, and motor disturbances were evaluated by the referring clinician. Data on awake and sleep electroencephalography (EEG) and/or video-polygraphy and brain magnetic resonance imaging were collected. Antiseizure medication response was retrospectively assessed by the referring clinician., Results: A large variety of seizure types was reported, although focal seizures were the most common. Encephalopathy related to status epilepticus during slow-wave sleep (ESES)/developmental epileptic encephalopathy with spike-wave activation during sleep (DEE-SWAS) was diagnosed in >25% of the individuals. All but one individual presented with neurodevelopmental delay. Regression in verbal and/or motor domains was observed in all individuals who suffered from ESES/DEE-SWAS, as well as some who did not. We could not identify a clear genotype-phenotype relationship even between individuals with the same DLG4 variants., Significance: Our study shows that a subgroup of individuals with DLG4-related synaptopathy have DEE, and approximately one fourth of them have ESES/DEE-SWAS. Our study confirms DEE as part of the DLG4-related phenotypic spectrum. Occurrence of ESES/DEE-SWAS in DLG4-related synaptopathy requires proper investigation with sleep EEG., (© 2023 International League Against Epilepsy.)
- Published
- 2024
- Full Text
- View/download PDF
187. Correction: Mobile element insertions in rare diseases: a comparative benchmark and reanalysis of 60,000 exome samples.
- Author
-
Wijngaard R, Demidov G, O'Gorman L, Corominas-Galbany J, Yaldiz B, Steyaert W, de Boer E, Vissers LELM, Kamsteeg EJ, Pfundt R, Swinkels H, den Ouden A, Te Paske IBAW, de Voer RM, Faivre L, Denommé-Pichon AS, Duffourd Y, Vitobello A, Chevarin M, Straub V, Töpf A, van der Kooi AJ, Magrinelli F, Rocca C, Hanna MG, Vandrovcova J, Ossowski S, Laurie S, and Gilissen C
- Published
- 2024
- Full Text
- View/download PDF
188. Episignatures in practice: independent evaluation of published episignatures for the molecular diagnostics of ten neurodevelopmental disorders.
- Author
-
Husson T, Lecoquierre F, Nicolas G, Richard AC, Afenjar A, Audebert-Bellanger S, Badens C, Bilan F, Bizaoui V, Boland A, Bonnet-Dupeyron MN, Brischoux-Boucher E, Bonnet C, Bournez M, Boute O, Brunelle P, Caumes R, Charles P, Chassaing N, Chatron N, Cogné B, Colin E, Cormier-Daire V, Dard R, Dauriat B, Delanne J, Deleuze JF, Demurger F, Denommé-Pichon AS, Depienne C, Dieux A, Dubourg C, Edery P, El Chehadeh S, Faivre L, Fergelot P, Fradin M, Garde A, Geneviève D, Gilbert-Dussardier B, Goizet C, Goldenberg A, Gouy E, Guerrot AM, Guimier A, Harzalla I, Héron D, Isidor B, Lacombe D, Le Guillou Horn X, Keren B, Kuechler A, Lacaze E, Lavillaureix A, Lehalle D, Lesca G, Lespinasse J, Levy J, Lyonnet S, Morel G, Jean-Marçais N, Marlin S, Marsili L, Mignot C, Nambot S, Nizon M, Olaso R, Pasquier L, Perrin L, Petit F, Pingault V, Piton A, Prieur F, Putoux A, Planes M, Odent S, Quélin C, Quemener-Redon S, Rama M, Rio M, Rossi M, Schaefer E, Rondeau S, Saugier-Veber P, Smol T, Sigaudy S, Touraine R, Mau-Them FT, Trimouille A, Van Gils J, Vanlerberghe C, Vantalon V, Vera G, Vincent M, Ziegler A, Guillin O, Campion D, and Charbonnier C
- Subjects
- Humans, DNA Methylation, Biomarkers, Pathology, Molecular, Neurodevelopmental Disorders diagnosis, Neurodevelopmental Disorders genetics
- Abstract
Variants of uncertain significance (VUS) are a significant issue for the molecular diagnosis of rare diseases. The publication of episignatures as effective biomarkers of certain Mendelian neurodevelopmental disorders has raised hopes to help classify VUS. However, prediction abilities of most published episignatures have not been independently investigated yet, which is a prerequisite for an informed and rigorous use in a diagnostic setting. We generated DNA methylation data from 101 carriers of (likely) pathogenic variants in ten different genes, 57 VUS carriers, and 25 healthy controls. Combining published episignature information and new validation data with a k-nearest-neighbour classifier within a leave-one-out scheme, we provide unbiased specificity and sensitivity estimates for each of the signatures. Our procedure reached 100% specificity, but the sensitivities unexpectedly spanned a very large spectrum. While ATRX, DNMT3A, KMT2D, and NSD1 signatures displayed a 100% sensitivity, CREBBP-RSTS and one of the CHD8 signatures reached <40% sensitivity on our dataset. Remaining Cornelia de Lange syndrome, KMT2A, KDM5C and CHD7 signatures reached 70-100% sensitivity at best with unstable performances, suffering from heterogeneous methylation profiles among cases and rare discordant samples. Our results call for cautiousness and demonstrate that episignatures do not perform equally well. Some signatures are ready for confident use in a diagnostic setting. Yet, it is imperative to characterise the actual validity perimeter and interpretation of each episignature with the help of larger validation sample sizes and in a broader set of episignatures., (© 2023. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
189. Further delineation of the rare GDACCF (global developmental delay, absent or hypoplastic corpus callosum, dysmorphic facies syndrome): genotype and phenotype of 22 patients with ZNF148 mutations.
- Author
-
Szakszon K, Lourenco CM, Callewaert BL, Geneviève D, Rouxel F, Morin D, Denommé-Pichon AS, Vitobello A, Patterson WG, Louie R, Pinto E Vairo F, Klee E, Kaiwar C, Gavrilova RH, Agre KE, Jacquemont S, Khadijé J, Giltay J, van Gassen K, Merő G, Gerkes E, Van Bon BW, Rinne T, Pfundt R, Brunner HG, Caluseriu O, Grasshoff U, Kehrer M, Haack TB, Khelifa MM, Bergmann AK, Cueto-González AM, Martorell AC, Ramachandrappa S, Sawyer LB, Fasel P, Braun D, Isis A, Superti-Furga A, McNiven V, Chitayat D, Ahmed SA, Brennenstuhl H, Schwaibolf EM, Battisti G, Parmentier B, and Stevens SJC
- Subjects
- Humans, Child, Corpus Callosum, Facies, Mutation genetics, Phenotype, Genotype, Syndrome, Developmental Disabilities pathology, DNA-Binding Proteins genetics, Transcription Factors genetics, Intellectual Disability genetics, Intellectual Disability diagnosis, Leukoencephalopathies
- Abstract
Background: Pathogenic variants in the zinc finger protein coding genes are rare causes of intellectual disability and congenital malformations. Mutations in the ZNF148 gene causing GDACCF syndrome (global developmental delay, absent or hypoplastic corpus callosum, dysmorphic facies; MIM #617260) have been reported in five individuals so far., Methods: As a result of an international collaboration using GeneMatcher Phenome Central Repository and personal communications, here we describe the clinical and molecular genetic characteristics of 22 previously unreported individuals., Results: The core clinical phenotype is characterised by developmental delay particularly in the domain of speech development, postnatal growth retardation, microcephaly and facial dysmorphism. Corpus callosum abnormalities appear less frequently than suggested by previous observations. The identified mutations concerned nonsense or frameshift variants that were mainly located in the last exon of the ZNF148 gene. Heterozygous deletion including the entire ZNF148 gene was found in only one case. Most mutations occurred de novo, but were inherited from an affected parent in two families., Conclusion: The GDACCF syndrome is clinically diverse, and a genotype-first approach, that is, exome sequencing is recommended for establishing a genetic diagnosis rather than a phenotype-first approach. However, the syndrome may be suspected based on some recurrent, recognisable features. Corpus callosum anomalies were not as constant as previously suggested, we therefore recommend to replace the term 'GDACCF syndrome' with ' ZNF148 -related neurodevelopmental disorder'., Competing Interests: Competing interests: None declared., (© Author(s) (or their employer(s)) 2024. No commercial re-use. See rights and permissions. Published by BMJ.)
- Published
- 2024
- Full Text
- View/download PDF
190. Delineation of the adult phenotype of Coffin-Siris syndrome in 35 individuals.
- Author
-
Schmetz A, Lüdecke HJ, Surowy H, Sivalingam S, Bruel AL, Caumes R, Charles P, Chatron N, Chrzanowska K, Codina-Solà M, Colson C, Cuscó I, Denommé-Pichon AS, Edery P, Faivre L, Green A, Heide S, Hsieh TC, Hustinx A, Kleinendorst L, Knopp C, Kraft F, Krawitz PM, Lasa-Aranzasti A, Lesca G, López-González V, Maraval J, Mignot C, Neuhann T, Netzer C, Oehl-Jaschkowitz B, Petit F, Philippe C, Posmyk R, Putoux A, Reis A, Sánchez-Soler MJ, Suh J, Tkemaladze T, Tran Mau Them F, Travessa A, Trujillano L, Valenzuela I, van Haelst MM, Vasileiou G, Vincent-Delorme C, Walther M, Verde P, Bramswig NC, and Wieczorek D
- Subjects
- Adult, Humans, Child, Neck abnormalities, Phenotype, DNA Helicases genetics, Nuclear Proteins genetics, Transcription Factors genetics, Chromosomal Proteins, Non-Histone genetics, DNA-Binding Proteins genetics, Intellectual Disability genetics, Intellectual Disability diagnosis, Abnormalities, Multiple genetics, Abnormalities, Multiple diagnosis, Micrognathism genetics, Micrognathism diagnosis, Hand Deformities, Congenital genetics, Face abnormalities
- Abstract
Coffin-Siris syndrome (CSS) is a rare multisystemic autosomal dominant disorder. Since 2012, alterations in genes of the SWI/SNF complex were identified as the molecular basis of CSS, studying largely pediatric cohorts. Therefore, there is a lack of information on the phenotype in adulthood, particularly on the clinical outcome in adulthood and associated risks. In an international collaborative effort, data from 35 individuals ≥ 18 years with a molecularly ascertained CSS diagnosis (variants in ARID1B, ARID2, SMARCA4, SMARCB1, SMARCC2, SMARCE1, SOX11, BICRA) using a comprehensive questionnaire was collected. Our results indicate that overweight and obesity are frequent in adults with CSS. Visual impairment, scoliosis, and behavioral anomalies are more prevalent than in published pediatric or mixed cohorts. Cognitive outcomes range from profound intellectual disability (ID) to low normal IQ, with most individuals having moderate ID. The present study describes the first exclusively adult cohort of CSS individuals. We were able to delineate some features of CSS that develop over time and have therefore been underrepresented in previously reported largely pediatric cohorts, and provide recommendations for follow-up., (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2024
- Full Text
- View/download PDF
191. Multiple molecular diagnoses in the field of intellectual disability and congenital anomalies: 3.5% of all positive cases.
- Author
-
Racine C, Denommé-Pichon AS, Engel C, Tran Mau-Them F, Bruel AL, Vitobello A, Safraou H, Sorlin A, Nambot S, Delanne J, Garde A, Colin E, Moutton S, Thevenon J, Jean-Marçais N, Willems M, Geneviève D, Pinson L, Perrin L, Laffargue F, Lespinasse J, Lacaze E, Molin A, Gerard M, Lambert L, Benigni C, Patat O, Bourgeois V, Poe C, Chevarin M, Couturier V, Garret P, Philippe C, Duffourd Y, Faivre L, and Thauvin-Robinet C
- Subjects
- Humans, Retrospective Studies, Phenotype, Exome Sequencing, Rare Diseases genetics, Intellectual Disability diagnosis, Intellectual Disability genetics
- Abstract
Purpose: Wide access to clinical exome/genome sequencing (ES/GS) enables the identification of multiple molecular diagnoses (MMDs), being a long-standing but underestimated concept, defined by two or more causal loci implicated in the phenotype of an individual with a rare disease. Only few series report MMDs rates (1.8% to 7.1%). This study highlights the increasing role of MMDs in a large cohort of individuals addressed for congenital anomalies/intellectual disability (CA/ID)., Methods: From 2014 to 2021, our diagnostic laboratory rendered 880/2658 positive ES diagnoses for CA/ID aetiology. Exhaustive search on MMDs from ES data was performed prospectively (January 2019 to December 2021) and retrospectively (March 2014 to December 2018)., Results: MMDs were identified in 31/880 individuals (3.5%), responsible for distinct (9/31) or overlapping (22/31) phenotypes, and potential MMDs in 39/880 additional individuals (4.4%)., Conclusion: MMDs are frequent in CA/ID and remain a strong challenge. Reanalysis of positive ES data appears essential when phenotypes are partially explained by the initial diagnosis or atypically enriched overtime. Up-to-date clinical data, clinical expertise from the referring physician, strong interactions between clinicians and biologists, and increasing gene discoveries and improved ES bioinformatics tools appear all the more fundamental to enhance chances of identifying MMDs. It is essential to provide appropriate patient care and genetic counselling., Competing Interests: Competing interests: None declared., (© Author(s) (or their employer(s)) 2024. No commercial re-use. See rights and permissions. Published by BMJ.)
- Published
- 2023
- Full Text
- View/download PDF
192. Missense variants in ANKRD11 cause KBG syndrome by impairment of stability or transcriptional activity of the encoded protein.
- Author
-
de Boer E, Ockeloen CW, Kampen RA, Hampstead JE, Dingemans AJM, Rots D, Lütje L, Ashraf T, Baker R, Barat-Houari M, Angle B, Chatron N, Denommé-Pichon AS, Devinsky O, Dubourg C, Elmslie F, Elloumi HZ, Faivre L, Fitzgerald-Butt S, Geneviève D, Goos JAC, Helm BM, Kini U, Lasa-Aranzasti A, Lesca G, Lynch SA, Mathijssen IMJ, McGowan R, Monaghan KG, Odent S, Pfundt R, Putoux A, van Reeuwijk J, Santen GWE, Sasaki E, Sorlin A, van der Spek PJ, Stegmann APA, Swagemakers SMA, Valenzuela I, Viora-Dupont E, Vitobello A, Ware SM, Wéber M, Gilissen C, Low KJ, Fisher SE, Vissers LELM, Wong MMK, and Kleefstra T
- Published
- 2023
- Full Text
- View/download PDF
193. BRAT1-related disorders: phenotypic spectrum and phenotype-genotype correlations from 97 patients.
- Author
-
Engel C, Valence S, Delplancq G, Maroofian R, Accogli A, Agolini E, Alkuraya FS, Baglioni V, Bagnasco I, Becmeur-Lefebvre M, Bertini E, Borggraefe I, Brischoux-Boucher E, Bruel AL, Brusco A, Bubshait DK, Cabrol C, Cilio MR, Cornet MC, Coubes C, Danhaive O, Delague V, Denommé-Pichon AS, Di Giacomo MC, Doco-Fenzy M, Engels H, Cremer K, Gérard M, Gleeson JG, Heron D, Goffeney J, Guimier A, Harms FL, Houlden H, Iacomino M, Kaiyrzhanov R, Kamien B, Karimiani EG, Kraus D, Kuentz P, Kutsche K, Lederer D, Massingham L, Mignot C, Morris-Rosendahl D, Nagarajan L, Odent S, Ormières C, Partlow JN, Pasquier L, Penney L, Philippe C, Piccolo G, Poulton C, Putoux A, Rio M, Rougeot C, Salpietro V, Scheffer I, Schneider A, Srivastava S, Straussberg R, Striano P, Valente EM, Venot P, Villard L, Vitobello A, Wagner J, Wagner M, Zaki MS, Zara F, Lesca G, Yassaee VR, Miryounesi M, Hashemi-Gorji F, Beiraghi M, Ashrafzadeh F, Galehdari H, Walsh C, Novelli A, Tacke M, Sadykova D, Maidyrov Y, Koneev K, Shashkin C, Capra V, Zamani M, Van Maldergem L, Burglen L, and Piard J
- Subjects
- Humans, Nuclear Proteins genetics, Phenotype, Genotype, Genetic Association Studies, Atrophy, Epilepsy genetics, Neurodegenerative Diseases genetics
- Abstract
BRAT1 biallelic variants are associated with rigidity and multifocal seizure syndrome, lethal neonatal (RMFSL), and neurodevelopmental disorder associating cerebellar atrophy with or without seizures syndrome (NEDCAS). To date, forty individuals have been reported in the literature. We collected clinical and molecular data from 57 additional cases allowing us to study a large cohort of 97 individuals and draw phenotype-genotype correlations. Fifty-nine individuals presented with BRAT1-related RMFSL phenotype. Most of them had no psychomotor acquisition (100%), epilepsy (100%), microcephaly (91%), limb rigidity (93%), and died prematurely (93%). Thirty-eight individuals presented a non-lethal phenotype of BRAT1-related NEDCAS phenotype. Seventy-six percent of the patients in this group were able to walk and 68% were able to say at least a few words. Most of them had cerebellar ataxia (82%), axial hypotonia (79%) and cerebellar atrophy (100%). Genotype-phenotype correlations in our cohort revealed that biallelic nonsense, frameshift or inframe deletion/insertion variants result in the severe BRAT1-related RMFSL phenotype (46/46; 100%). In contrast, genotypes with at least one missense were more likely associated with NEDCAS (28/34; 82%). The phenotype of patients carrying splice variants was variable: 41% presented with RMFSL (7/17) and 59% with NEDCAS (10/17)., (© 2023. The Author(s), under exclusive licence to European Society of Human Genetics.)
- Published
- 2023
- Full Text
- View/download PDF
194. YWHAE loss of function causes a rare neurodevelopmental disease with brain abnormalities in human and mouse.
- Author
-
Denommé-Pichon AS, Collins SC, Bruel AL, Mikhaleva A, Wagner C, Vancollie VE, Thomas Q, Chevarin M, Weber M, Prada CE, Overs A, Palomares-Bralo M, Santos-Simarro F, Pacio-Míguez M, Busa T, Legius E, Bacino CA, Rosenfeld JA, Le Guyader G, Egloff M, Le Guillou X, Mencarelli MA, Renieri A, Grosso S, Levy J, Dozières B, Desguerre I, Vitobello A, Duffourd Y, Lelliott CJ, Thauvin-Robinet C, Philippe C, Faivre L, and Yalcin B
- Subjects
- Humans, Animals, Mice, Brain abnormalities, 14-3-3 Proteins genetics, Lissencephaly genetics, Neurodevelopmental Disorders, Classical Lissencephalies and Subcortical Band Heterotopias, Intellectual Disability genetics
- Abstract
Purpose: Miller-Dieker syndrome is caused by a multiple gene deletion, including PAFAH1B1 and YWHAE. Although deletion of PAFAH1B1 causes lissencephaly unambiguously, deletion of YWHAE alone has not clearly been linked to a human disorder., Methods: Cases with YWHAE variants were collected through international data sharing networks. To address the specific impact of YWHAE loss of function, we phenotyped a mouse knockout of Ywhae., Results: We report a series of 10 individuals with heterozygous loss-of-function YWHAE variants (3 single-nucleotide variants and 7 deletions <1 Mb encompassing YWHAE but not PAFAH1B1), including 8 new cases and 2 follow-ups, added with 5 cases (copy number variants) from literature review. Although, until now, only 1 intragenic deletion has been described in YWHAE, we report 4 new variants specifically in YWHAE (3 splice variants and 1 intragenic deletion). The most frequent manifestations are developmental delay, delayed speech, seizures, and brain malformations, including corpus callosum hypoplasia, delayed myelination, and ventricular dilatation. Individuals with variants affecting YWHAE alone have milder features than those with larger deletions. Neuroanatomical studies in Ywhae
-/- mice revealed brain structural defects, including thin cerebral cortex, corpus callosum dysgenesis, and hydrocephalus paralleling those seen in humans., Conclusion: This study further demonstrates that YWHAE loss-of-function variants cause a neurodevelopmental disease with brain abnormalities., Competing Interests: Conflict of interest The authors declare no conflicts of interest., (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
195. A second look at exome sequencing data: detecting mobile elements insertion in a rare disease cohort.
- Author
-
Garret P, Chevarin M, Vitobello A, Verdez S, Fournier C, Verloes A, Tisserant E, Vabres P, Prevel O, Philippe C, Denommé-Pichon AS, Bruel AL, Mau-Them FT, Safraou H, Boughalem A, Costa JM, Trost D, Thauvin-Robinet C, Faivre L, and Duffourd Y
- Subjects
- Humans, Exome Sequencing, Exons, Exome, Membrane Proteins genetics, Neoplasm Proteins genetics, Rare Diseases genetics, Intellectual Disability genetics
- Abstract
About 0.3% of all variants are due to de novo mobile element insertions (MEIs). The massive development of next-generation sequencing has made it possible to identify MEIs on a large scale. We analyzed exome sequencing (ES) data from 3232 individuals (2410 probands) with developmental and/or neurological abnormalities, with MELT, a tool designed to identify MEIs. The results were filtered by frequency, impacted region and gene function. Following phenotype comparison, two candidates were identified in two unrelated probands. The first mobile element (ME) was found in a patient referred for poikilodermia. A homozygous insertion was identified in the FERMT1 gene involved in Kindler syndrome. RNA study confirmed its pathological impact on splicing. The second ME was a de novo Alu insertion in the GRIN2B gene involved in intellectual disability, and detected in a patient with a developmental disorder. The frequency of de novo exonic MEIs in our study is concordant with previous studies on ES data. This project, which aimed to identify pathological MEIs in the coding sequence of genes, confirms that including detection of MEs in the ES pipeline can increase the diagnostic rate. This work provides additional evidence that ES could be used alone as a diagnostic exam., (© 2022. The Author(s), under exclusive licence to European Society of Human Genetics.)
- Published
- 2023
- Full Text
- View/download PDF
196. Combining globally search for a regular expression and print matching lines with bibliographic monitoring of genomic database improves diagnosis.
- Author
-
Tran Mau-Them F, Overs A, Bruel AL, Duquet R, Thareau M, Denommé-Pichon AS, Vitobello A, Sorlin A, Safraou H, Nambot S, Delanne J, Moutton S, Racine C, Engel C, De Giraud d'Agay M, Lehalle D, Goldenberg A, Willems M, Coubes C, Genevieve D, Verloes A, Capri Y, Perrin L, Jacquemont ML, Lambert L, Lacaze E, Thevenon J, Hana N, Van-Gils J, Dubucs C, Bizaoui V, Gerard-Blanluet M, Lespinasse J, Mercier S, Guerrot AM, Maystadt I, Tisserant E, Faivre L, Philippe C, Duffourd Y, and Thauvin-Robinet C
- Abstract
Introduction: Exome sequencing has a diagnostic yield ranging from 25% to 70% in rare diseases and regularly implicates genes in novel disorders. Retrospective data reanalysis has demonstrated strong efficacy in improving diagnosis, but poses organizational difficulties for clinical laboratories. Patients and methods: We applied a reanalysis strategy based on intensive prospective bibliographic monitoring along with direct application of the GREP command-line tool (to "globally search for a regular expression and print matching lines") in a large ES database. For 18 months, we submitted the same five keywords of interest [( intellectual disability , ( neuro ) developmental delay , and ( neuro ) developmental disorder )] to PubMed on a daily basis to identify recently published novel disease-gene associations or new phenotypes in genes already implicated in human pathology. We used the Linux GREP tool and an in-house script to collect all variants of these genes from our 5,459 exome database. Results: After GREP queries and variant filtration, we identified 128 genes of interest and collected 56 candidate variants from 53 individuals. We confirmed causal diagnosis for 19/128 genes (15%) in 21 individuals and identified variants of unknown significance for 19/128 genes (15%) in 23 individuals. Altogether, GREP queries for only 128 genes over a period of 18 months permitted a causal diagnosis to be established in 21/2875 undiagnosed affected probands (0.7%). Conclusion: The GREP query strategy is efficient and less tedious than complete periodic reanalysis. It is an interesting reanalysis strategy to improve diagnosis., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Tran Mau-Them, Overs, Bruel, Duquet, Thareau, Denommé-Pichon, Vitobello, Sorlin, Safraou, Nambot, Delanne, Moutton, Racine, Engel, De Giraud d’Agay, Lehalle, Goldenberg, Willems, Coubes, Genevieve, Verloes, Capri, Perrin, Jacquemont, Lambert, Lacaze, Thevenon, Hana, Van-Gils, Dubucs, Bizaoui, Gerard-Blanluet, Lespinasse, Mercier, Guerrot, Maystadt, Tisserant, Faivre, Philippe, Duffourd and Thauvin-Robinet.)
- Published
- 2023
- Full Text
- View/download PDF
197. The neurodevelopmental and facial phenotype in individuals with a TRIP12 variant.
- Author
-
Aerden M, Denommé-Pichon AS, Bonneau D, Bruel AL, Delanne J, Gérard B, Mazel B, Philippe C, Pinson L, Prouteau C, Putoux A, Tran Mau-Them F, Viora-Dupont É, Vitobello A, Ziegler A, Piton A, Isidor B, Francannet C, Maillard PY, Julia S, Philippe A, Schaefer E, Koene S, Ruivenkamp C, Hoffer M, Legius E, Theunis M, Keren B, Buratti J, Charles P, Courtin T, Misra-Isrie M, van Haelst M, Waisfisz Q, Wieczorek D, Schmetz A, Herget T, Kortüm F, Lisfeld J, Debray FG, Bramswig NC, Atallah I, Fodstad H, Jouret G, Almoguera B, Tahsin-Swafiri S, Santos-Simarro F, Palomares-Bralo M, López-González V, Kibaek M, Tørring PM, Renieri A, Bruno LP, Õunap K, Wojcik M, Hsieh TC, Krawitz P, and Van Esch H
- Subjects
- Humans, Phenotype, Mutation, Missense, Carrier Proteins genetics, Ubiquitin-Protein Ligases genetics, Autism Spectrum Disorder genetics, Intellectual Disability genetics, Neurodevelopmental Disorders genetics
- Abstract
Haploinsufficiency of TRIP12 causes a neurodevelopmental disorder characterized by intellectual disability associated with epilepsy, autism spectrum disorder and dysmorphic features, also named Clark-Baraitser syndrome. Only a limited number of cases have been reported to date. We aimed to further delineate the TRIP12-associated phenotype and objectify characteristic facial traits through GestaltMatcher image analysis based on deep-learning algorithms in order to establish a TRIP12 gestalt. 38 individuals between 3 and 66 years (F = 20, M = 18) - 1 previously published and 37 novel individuals - were recruited through an ERN ITHACA call for collaboration. 35 TRIP12 variants were identified, including frameshift (n = 15) and nonsense (n = 6) variants, as well as missense (n = 5) and splice (n = 3) variants, intragenic deletions (n = 4) and two multigene deletions disrupting TRIP12. Though variable in severity, global developmental delay was noted in all individuals, with language deficit most pronounced. About half showed autistic features and susceptibility to obesity seemed inherent to this disorder. A more severe expression was noted in individuals with a missense variant. Facial analysis showed a clear gestalt including deep-set eyes with narrow palpebral fissures and fullness of the upper eyelids, downturned corners of the mouth and large, often low-set ears with prominent earlobes. We report the largest cohort to date of individuals with TRIP12 variants, further delineating the associated phenotype and introducing a facial gestalt. These findings will improve future counseling and patient guidance., (© 2023. The Author(s), under exclusive licence to European Society of Human Genetics.)
- Published
- 2023
- Full Text
- View/download PDF
198. Prenatal diagnosis by trio exome sequencing in fetuses with ultrasound anomalies: A powerful diagnostic tool.
- Author
-
Tran Mau-Them F, Delanne J, Denommé-Pichon AS, Safraou H, Bruel AL, Vitobello A, Garde A, Nambot S, Bourgon N, Racine C, Sorlin A, Moutton S, Marle N, Rousseau T, Sagot P, Simon E, Vincent-Delorme C, Boute O, Colson C, Petit F, Legendre M, Naudion S, Rooryck C, Prouteau C, Colin E, Guichet A, Ziegler A, Bonneau D, Morel G, Fradin M, Lavillaureix A, Quelin C, Pasquier L, Odent S, Vera G, Goldenberg A, Guerrot AM, Brehin AC, Putoux A, Attia J, Abel C, Blanchet P, Wells CF, Deiller C, Nizon M, Mercier S, Vincent M, Isidor B, Amiel J, Dard R, Godin M, Gruchy N, Jeanne M, Schaeffer E, Maillard PY, Payet F, Jacquemont ML, Francannet C, Sigaudy S, Bergot M, Tisserant E, Ascencio ML, Binquet C, Duffourd Y, Philippe C, Faivre L, and Thauvin-Robinet C
- Abstract
Introduction: Prenatal ultrasound (US) anomalies are detected in around 5%-10% of pregnancies. In prenatal diagnosis, exome sequencing (ES) diagnostic yield ranges from 6% to 80% depending on the inclusion criteria. We describe the first French national multicenter pilot study aiming to implement ES in prenatal diagnosis following the detection of anomalies on US. Patients and methods: We prospectively performed prenatal trio-ES in 150 fetuses with at least two US anomalies or one US anomaly known to be frequently linked to a genetic disorder. Trio-ES was only performed if the results could influence pregnancy management. Chromosomal microarray (CMA) was performed before or in parallel. Results: A causal diagnosis was identified in 52/150 fetuses (34%) with a median time to diagnosis of 28 days, which rose to 56/150 fetuses (37%) after additional investigation. Sporadic occurrences were identified in 34/56 (60%) fetuses and unfavorable vital and/or neurodevelopmental prognosis was made in 13/56 (24%) fetuses. The overall diagnostic yield was 41% (37/89) with first-line trio-ES versus 31% (19/61) after normal CMA. Trio-ES and CMA were systematically concordant for identification of pathogenic CNV. Conclusion: Trio-ES provided a substantial prenatal diagnostic yield, similar to postnatal diagnosis with a median turnaround of approximately 1 month, supporting its routine implementation during the detection of prenatal US anomalies., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Tran Mau-Them, Delanne, Denommé-Pichon, Safraou, Bruel, Vitobello, Garde, Nambot, Bourgon, Racine, Sorlin, Moutton, Marle, Rousseau, Sagot, Simon, Vincent-Delorme, Boute, Colson, Petit, Legendre, Naudion, Rooryck, Prouteau, Colin, Guichet, Ziegler, Bonneau, Morel, Fradin, Lavillaureix, Quelin, Pasquier, Odent, Vera, Goldenberg, Guerrot, Brehin, Putoux, Attia, Abel, Blanchet, Wells, Deiller, Nizon, Mercier, Vincent, Isidor, Amiel, Dard, Godin, Gruchy, Jeanne, Schaeffer, Maillard, Payet, Jacquemont, Francannet, Sigaudy, Bergot, Tisserant, Ascencio, Binquet, Duffourd, Philippe, Faivre and Thauvin-Robinet.)
- Published
- 2023
- Full Text
- View/download PDF
199. Mechanism of KMT5B haploinsufficiency in neurodevelopment in humans and mice.
- Author
-
Sheppard SE, Bryant L, Wickramasekara RN, Vaccaro C, Robertson B, Hallgren J, Hulen J, Watson CJ, Faundes V, Duffourd Y, Lee P, Simon MC, de la Cruz X, Padilla N, Flores-Mendez M, Akizu N, Smiler J, Pellegrino Da Silva R, Li D, March M, Diaz-Rosado A, Peixoto de Barcelos I, Choa ZX, Lim CY, Dubourg C, Journel H, Demurger F, Mulhern M, Akman C, Lippa N, Andrews M, Baldridge D, Constantino J, van Haeringen A, Snoeck-Streef I, Chow P, Hing A, Graham JM Jr, Au M, Faivre L, Shen W, Mao R, Palumbos J, Viskochil D, Gahl W, Tifft C, Macnamara E, Hauser N, Miller R, Maffeo J, Afenjar A, Doummar D, Keren B, Arn P, Macklin-Mantia S, Meerschaut I, Callewaert B, Reis A, Zweier C, Brewer C, Saggar A, Smeland MF, Kumar A, Elmslie F, Deshpande C, Nizon M, Cogne B, van Ierland Y, Wilke M, van Slegtenhorst M, Koudijs S, Chen JY, Dredge D, Pier D, Wortmann S, Kamsteeg EJ, Koch J, Haynes D, Pollack L, Titheradge H, Ranguin K, Denommé-Pichon AS, Weber S, Pérez de la Fuente R, Sánchez Del Pozo J, Lezana Rosales JM, Joset P, Steindl K, Rauch A, Mei D, Mari F, Guerrini R, Lespinasse J, Tran Mau-Them F, Philippe C, Dauriat B, Raymond L, Moutton S, Cueto-González AM, Tan TY, Mignot C, Grotto S, Renaldo F, Drivas TG, Hennessy L, Raper A, Parenti I, Kaiser FJ, Kuechler A, Busk ØL, Islam L, Siedlik JA, Henderson LB, Juusola J, Person R, Schnur RE, Vitobello A, Banka S, Bhoj EJ, and Stessman HAF
- Subjects
- Animals, Humans, Mice, Haploinsufficiency, Methyltransferases genetics, Mice, Knockout, Phenotype, Megalencephaly, Neurodevelopmental Disorders genetics, Histone Methyltransferases genetics
- Abstract
Pathogenic variants in KMT5B , a lysine methyltransferase, are associated with global developmental delay, macrocephaly, autism, and congenital anomalies (OMIM # 617788). Given the relatively recent discovery of this disorder, it has not been fully characterized. Deep phenotyping of the largest ( n = 43) patient cohort to date identified that hypotonia and congenital heart defects are prominent features that were previously not associated with this syndrome. Both missense variants and putative loss-of-function variants resulted in slow growth in patient-derived cell lines. KMT5B homozygous knockout mice were smaller in size than their wild-type littermates but did not have significantly smaller brains, suggesting relative macrocephaly, also noted as a prominent clinical feature. RNA sequencing of patient lymphoblasts and Kmt5b haploinsufficient mouse brains identified differentially expressed pathways associated with nervous system development and function including axon guidance signaling. Overall, we identified additional pathogenic variants and clinical features in KMT5B -related neurodevelopmental disorder and provide insights into the molecular mechanisms of the disorder using multiple model systems.
- Published
- 2023
- Full Text
- View/download PDF
200. Heterozygous and homozygous variants in STX1A cause a neurodevelopmental disorder with or without epilepsy.
- Author
-
Luppe J, Sticht H, Lecoquierre F, Goldenberg A, Gorman KM, Molloy B, Agolini E, Novelli A, Briuglia S, Kuismin O, Marcelis C, Vitobello A, Denommé-Pichon AS, Julia S, Lemke JR, Abou Jamra R, and Platzer K
- Subjects
- Humans, Phenotype, Syntaxin 1 genetics, Heterozygote, Autistic Disorder genetics, Epilepsy genetics, Intellectual Disability pathology, Neurodevelopmental Disorders genetics
- Abstract
The neuronal SNARE complex drives synaptic vesicle exocytosis. Therefore, one of its core proteins syntaxin 1A (STX1A) has long been suspected to play a role in neurodevelopmental disorders. We assembled eight individuals harboring ultra rare variants in STX1A who present with a spectrum of intellectual disability, autism and epilepsy. Causative variants comprise a homozygous splice variant, three de novo missense variants and two inframe deletions of a single amino acid. We observed a phenotype mainly driven by epilepsy in the individuals with missense variants in contrast to intellectual disability and autistic behavior in individuals with single amino acid deletions and the splicing variant. In silico modeling of missense variants and single amino acid deletions show different impaired protein-protein interactions. We hypothesize the two phenotypic courses of affected individuals to be dependent on two different pathogenic mechanisms: (1) a weakened inhibitory STX1A-STXBP1 interaction due to missense variants results in an STX1A-related developmental epileptic encephalopathy and (2) a hampered SNARE complex formation due to inframe deletions causes an STX1A-related intellectual disability and autism phenotype. Our description of a STX1A-related neurodevelopmental disorder with or without epilepsy thus expands the group of rare diseases called SNAREopathies., (© 2022. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.