With the purpose of optimizing the adaptations obtained from the running endurance training, the LED application has been used in order to accelerate the muscle recovery and as an ergogenic resource for the oxidative metabolism. However, little is known about the longitudinal effect of LED application associated with endurance training on performance parameters, oxidative stress responses and muscle soreness. Therefore, the aim of this study was to examine the effects of eight weeks of running training, prescribed by the peak velocity (Vpeak) and its respective time limit (tlim) associated with LED application on performance variables, oxidative stress markers and muscle soreness in untrained young men. Thirty young and untrained men participated in this study, who were divided into a control group (CG) and LED group (LEDG) with 15 participants each group. Both groups perfomed a training protocol during eight weeks, wherein the LEDG had the LED application and CG no. The LED was applied immediately before all training sessions in both legs, respecting the absence or presence of light emission for each group. Participants perfomed evaluations on three moments: at week 1 (W1), after the first four weeks of training (weeks 2-5) at 6th week (W6) and after the last four weeks of training (weeks 7-10) at 11th week (W11). Performance evaluations were: tests to determine Vpeak and tlim and 5-km time trial. It was collectect, in the morning, 6 ml of venous blood to analyze the oxidative stress markers: malondialdehyde (MDA) in plasma, antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) in erythrocytes, the total glutathione concentrations, reduced (GSH) and oxidized (GSSG); it was also evaluated muscle soreness through the visual analogic scale before and after all training sessions. The comparisons between groups and the moments W1, W6 and W11 was made by mixed ANOVA for repeated measures followed by Bonferroni as a post hoc test for multiple comparisons; it was calculated the percentage (%) of change and the effect sizes (ES) to express the magnitudes of changes during the trainining period. Statistical significance was set at P < 0.05. The results showed that the Vpeak increased significantly in both groups (CG: W1 = 13.4 ± 1.1, W11 = 14.4 ± 1.0 km∙h-1; LEDG: W1 = 13.4 ± 1.2, W11 = 14.6 ± 1.0 km∙h-1); the 5-km test duraiton (T5-km) decreased significantly in both groups, but this decrease was more expressive in the LEDG (W1 = 27.6 ± 3.0, W11 = 23.9 ± 2.2; -13.1 ± 5.2%) compared to CG (W1 = 27.0 ± 3.3, W11 = 24.1 ± 2.5; -10.3 ± 4.2%). After the training period the MDA concentrations remained similar in both groups (CG: W1 = 0.409 ± 0.464, W11 = 0.411 ± 0.357 nmol/MDA ml; LEDG: W1 = 0.307 ± 0.224, W11 = 0.310 ± 0.241 nmol/MDA ml) but with greater magnitude of increase in the CG compared to LEDG (274.3 ± 556.3% vs 66.7 ± 205.4%). In the LEDG it was observed an increase in the activities of enzymes CAT (W1 = 49.62 ± 25.35, W11 = 53.83 ± 29.94 U/mg Hb) and SOD (W1 = 1.06 ± 0.58, W11 = 1.33 ± 1.00 U/mg Hb), while in the CG these enzymes decreased (CAT: W1 = 63.51 ± 29.83, W11 = 45.00 ± 25.43 U/mg Hb; SOD: W1 = 1.18 ± 0.51, W11 = 1.04 ± 0.57 U/mg Hb), however, without significant differences in the comparison W1 vs W11. For GSSG there was a decrease in LEDG (W1 = 56.3 ± 83.4, W11 = 9.81 ± 4.76 μmol/g Hb) and an increase in the CG (W1 = 8.48 ± 2.94, W11 = 12.42 ± 7.90 μmol/g Hb), with significant difference between the % change values (W1 vs W11) of the groups (-13.5 ± 30.3% vs 56.3 ± 83.4%); furthermore, it was demonstrated a greater magnitude of increase in the GSH/GSSG ratio in the LEDG (W1 = 1.20 ± 0.44, W11 = 1.53 ± 0.40, 39.4 ± 55.7%, moderate ES) compared to CG (W1 = 1.26 ± 0.44, W11 = 1.36 ± 0.45; 24.9 ± 62.6%; small ES) after the training period. In the last three weeks of running training there was a tendency of lower increases in the post-session muscle soreness scores (i.e, absolute difference pre vs post-session) in the LEDG (values between 2.0 ± 2.1 and 2.1 ± 2.1 cm) compared to CG (values between 2.7 ± 2.3 and 3.1 ± 2.6 cm), with small ES in the comparison between groups for these scores. We concluded that the running endurance training associated with LED application had positive effects on improving the 5-km performance, decrease oxidative stress, increase the antioxidant defense and attenuate muscle soreness in untrained young men. Com a finalidade de otimizar as adaptações advindas do treinamento de corrida de endurance, a aplicação de LED vem sendo utilizada com o intuito de acelerar a recuperação muscular e como um recurso ergogênico do metabolismo oxidativo. Entretanto, pouco se sabe sobre o efeito longitudinal da aplicação de LED associada ao treinamento de endurance sobre parâmetros de desempenho, respostas de estresse oxidativo e dor muscular. Logo, o objetivo do presente estudo foi avaliar os efeitos de oito semanas de treinamento de corrida, prescritos pela velocidade pico (Vpico) e seu respectivo tempo limite (tlim), em associação com a aplicação de LED sobre variáveis de desempenho, marcadores de estresse oxidativo e dor muscular em homens jovens não treinados. Participaram do estudo 30 homens jovens não treinados que foram divididos em um grupo controle (GC) e um grupo LED (GL) com 15 participantes cada. Ambos os grupos realizaram um protocolo de treinamento durante oito semanas, no qual o GL teve a aplicação de LED e o GC não. O LED foi aplicado imediatamente antes de todas as sessões de treinamento em ambas as pernas, respeitando-se a ausência ou presença da emissão de luz para cada grupo. Os participantes realizaram avaliações em três momentos: na semana 1 (S1), após as primeiras quatro semanas de treinamento (semanas 2-5), ou seja, na 6ª semana do protocolo e após as quatro últimas semanas de treinamento (semanas 7-10), ou seja, na 11ª semana do protocolo. As avaliações de desempenho foram: testes para determinação Vpico e do tlim e performance de 5 km. Foram coletados, no período da manhã, 6 ml de sangue venoso para a dosagem dos marcadores de estresse oxidativo: malondialdeído (MDA) em plasma, enzimas antioxidantes catalase (CAT) e superóxido dismutase (SOD), concentrações de glutationa total, reduzida (GSH) e oxidada (GSSG) em eritrócitos; também foi avaliada a dor muscular através da escala visual analógica antes e após todas as sessões de treinamento. As comparações entre os grupos e momentos S1, S6 e S11 foi feita pela Anova mista de medidas repetidas seguido do post hoc de Bonferroni; foi calculado o valor percentual (%) de variação e os tamanhos de efeito (TE) para determinação da magnitude de mudança durante o período de treinamento. Adotou-se nível de significância de P < 0,05. Os resultados demonstraram que a Vpico aumentou significantemente em ambos os grupos (GC: S1 = 13,4 ± 1,1, S11 = 14,4 ± 1,0 km∙h-1; GL: S1 = 13,4 ± 1,2, S11 = 14,6 ± 1,0 km∙h-1); o tempo da performance de 5 km (T5-km) diminuiu significantemente em ambos grupos, mas essa queda foi mais expressiva no GL (S1 = 27,6 ± 3,0, S11 = 23,9 ± 2,2; -13,1 ± 5,2%) comparado ao GC (S1 = 27,0 ± 3,3, S11 = 24,1 ± 2,5; -10,3 ± 4,2%). Após o período de treinamento as concentrações de MDA permaneceram similares em ambos os grupos (GC: S1 = 0,409 ± 0,464, S11 = 0,411 ± 0,357 nmol/MDA ml; GL: S1 = 0,307 ± 0,224, S11 = 0,310 ± 0,241 nmol/MDA ml), mas com magnitude de aumento maior no GC comparado ao GL (274,3 ± 556,3% vs 66,7 ± 205,4%). No GL foi observado aumento das atividades das enzimas CAT (S1 = 49,62 ± 25,35, S11 = 53,83 ± 29,94 U/mg Hb) e SOD (S1 = 1,06 ± 0,58, S11 = 1,33 ± 1,00 U/mg Hb), enquanto no GC essas enzimas diminuíram (CAT: S1 = 63,51 ± 29,83, S11 = 45,00 ± 25,43 U/mg Hb; SOD: S1 = 1,18 ± 0,51, S11 = 1,04 ± 0,57 U/mg Hb), entretanto sem diferenças estatísticas na comparação S1 vs S11. Para a GSSG houve diminuição no GL (S1 = 56,3 ± 83,4, S11 = 9,81 ± 4,76 μmol/g Hb) e aumento no GC (S1 = 8,48 ± 2,94, S11 = 12,42 ± 7,90 μmol/g Hb), com diferença significante entre os valores de % de variação (S1 vs S11) dos grupos (-13,5 ± 30,3% vs 56,3 ± 83,4%); além disso, foi demonstrado uma magnitude de aumento da relação GSH/GSSG maior no GL (S1 = 1,20 ± 0,44, S11 = 1,53 ± 0,40; 39,4 ± 55,7%; TE moderado) do que no GC (S1 = 1,26 ± 0,44, S11 = 1,36 ± 0,45; 24,9 ± 62,6%; TE pequeno) após o período de treinamento. Nas últimas três semanas de treinamento de corrida houve uma tendência de menor aumento dos valores de dor muscular pós-sessão (i.e., diferença absoluta pré vs pós-sessão) no GL (entre 2,0 ± 2,1 e 2,1 ± 2,1 cm) comparado ao GC (entre 2,7 ± 2,3 e 3,1 ± 2,6 cm) com TE pequeno na comparação entre os grupos para esses valores. Concluímos que o treinamento de corrida de endurance associado à aplicação de LED apresentou efeitos positivos na melhora da performance de 5 km, na diminuiçao do estresse oxidativo, aumento da defesa antioxidante e na atenuação da dor muscular em homens jovens não treinados. x, 100 f