Avoscan, Laure, Vansuyt, Gérard, Lherminier, Jeannine, Arnould, Christine, Conejero, Geneviève, Bernaud, Eric, Lemanceau, Philippe, Agroécologie [Dijon], Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement, Biochimie et Physiologie Moléculaire des Plantes (BPMP), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro), Plateforme d'histocytologie et d'imagerie cellulaire végétale (PHIV), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro), Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro), Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC), Université de Montpellier (UM)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (UMR AGAP), Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut National de la Recherche Agronomique (INRA)-Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro), Microbiologie du Sol et de l'Environnement (MSE), Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB), Plante - microbe - environnement : biochimie, biologie cellulaire et écologie (PMEBBCE), Centre National de la Recherche Scientifique (CNRS)-Université de Bourgogne (UB)-Institut National de la Recherche Agronomique (INRA)-Etablissement National d'Enseignement Supérieur Agronomique de Dijon (ENESAD), Microscopy Conference (MC). Graz, AUT., Etablissement National d'Enseignement Supérieur Agronomique de Dijon (ENESAD)-Institut National de la Recherche Agronomique (INRA)-Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), Microbiologie du Sol et de l'Environnement ( MSE ), Institut National de la Recherche Agronomique ( INRA ) -Université de Bourgogne ( UB ), Plante - microbe - environnement : biochimie, biologie cellulaire et écologie ( PMEBBCE ), Etablissement National d'Enseignement Supérieur Agronomique de Dijon ( ENESAD ) -Institut National de la Recherche Agronomique ( INRA ) -Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS ), Biochimie et Physiologie Moléculaire des Plantes ( BPMP ), and Centre international d'études supérieures en sciences agronomiques ( Montpellier SupAgro ) -Institut national de la recherche agronomique [Montpellier] ( INRA Montpellier ) -Université de Montpellier ( UM ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut national d’études supérieures agronomiques de Montpellier ( Montpellier SupAgro )
affiche, résumé publié; Iron is an essential element for plants and microbes. However, in most cultivated soils, the concentration of iron available for these living organisms is very low since its solubility is controlled by stable hydroxides, oxyhydroxides and oxides. The high demand for iron by plants and microorganisms in the rhizosphere together with its low availability in soils leads to a strong competition for this nutrient among living organisms. To face this competition, plants and microorganisms have developed active strategies of iron uptake. In non graminaceous plants (strategy I), iron uptake relies on acidification and reduction of Fe+++ in Fe++ which incorporated in the roots by iron transporters. Active iron uptake by microorganisms relies on siderophores showing high affinity for iron. We have previously shown that plants of Arabidopsis thaliana (strategy I) supplemented with Fe-pyoverdine had a higher iron content than those supplemented Fe- EDTA [1]. Iron from pyoverdine was not incorporated through the major iron transporter IRT1 as indicated by the similar iron content of the wild-type plant and IRT1 mutant knockout iron transporter IRT1. Furthermore, pyoverdine was shown to be incorporated as indicated by its presence in planta based on enzyme-linked immunosorbent assay measurement of pyoverdine and on 15N of 15N-pyoverdine. Taken together, these observations suggest that iron from Fe-pyoverdine was not incorporated in planta through the strategy I. In the present, we explored the possible incorporation of iron from pyoverdine at the cellular level. For that purpose, on Arabidopsis when cultivated in the presence of Fe-EDTA (50µM) or Fe-pyoverdine (50µM), we analyzed the immunolocalization of pyoverdine in roots by confocal microscopy and performed ultrastructural studies with transmission electron microscopy (TEM). Plants were cultivated in vitro with these chelates during seven days. Immunolabeling were performed with pyoverdine antibody as primary antibody and fluorescent secondary antibody for confocal microscopy and colloidal gold coupled to secondary antibody for immunogold labeling by TEM. Observations with confocal microscopy clearly indicated the presence of pyoverdine in fresh tissue sections. This immunolocalization revealed the presence of pyoverdine in root apoplasmic space. Observations with TEM showed the more abundant presence of vesicles in root apoplasm of plants when cultured with Fe-pyoverdine than with Fe-EDTA (Figure 1). Despite that pyoverdine immunogold labeling of roots sections did not allow to reveal the formal presence of pyoverdine in these vesicles, the present results suggest that the incorporation of Fe- pyoverdine might rely on endocytosis.