343 results on '"Rieben R"'
Search Results
102. Arbitrary order hierarchical vector bases for hexahedrons [FEM applications].
- Author
-
Rieben, R., White, D., and Rodrigue, G.
- Published
- 2003
- Full Text
- View/download PDF
103. Generalized high order interpolatory 1-form bases for computational electromagnetics.
- Author
-
Rieben, R., Rodrigue, G., and White, D.
- Published
- 2002
- Full Text
- View/download PDF
104. Biocompatibility in transfusion medicine
- Author
-
Nydegger, U., Rieben, R., and Lämmle, B.
- Published
- 1996
- Full Text
- View/download PDF
105. Development of a C1q-ABO-ELISA to measure C1q binding by human anti-A alloantibodies
- Author
-
Allmen, E. Von, Rieben, R., and Nydegger, U. E.
- Published
- 1994
- Full Text
- View/download PDF
106. Development and Application of Compatible Discretizations of Maxwell's Equations
- Author
-
Rieben, R
- Published
- 2005
107. Prototype Mixed Finite Element Hydrodynamics Capability in ARES
- Author
-
Rieben, R
- Published
- 2008
- Full Text
- View/download PDF
108. Inhalation anesthesia of rats: influence of the fraction of inspired oxygen on limb ischemia/reperfusion injury
- Author
-
Claudia Duehrkop, Robert Rieben, Jan A. Plock, Shengye Zhang, University of Zurich, and Rieben, R
- Subjects
Male ,0301 basic medicine ,Partial Pressure ,3400 General Veterinary ,Ischemia ,610 Medicine & health ,medicine.disease_cause ,03 medical and health sciences ,chemistry.chemical_compound ,Fraction of inspired oxygen ,medicine ,Animals ,Rats, Wistar ,10266 Clinic for Reconstructive Surgery ,Oxygen saturation (medicine) ,Isoflurane ,General Veterinary ,business.industry ,Muscles ,medicine.disease ,Malondialdehyde ,Hindlimb ,Rats ,3. Good health ,Oxygen ,Oxidative Stress ,030104 developmental biology ,chemistry ,Reperfusion Injury ,Anesthesia ,Anesthetics, Inhalation ,Room air distribution ,Animal Science and Zoology ,1103 Animal Science and Zoology ,Anesthesia, Inhalation ,business ,Reperfusion injury ,Oxidative stress ,medicine.drug - Abstract
Inhalation anesthesia with isoflurane is a well-established and safe method used in small laboratory animals. In most cases oxygen is used as a carrier gas for isoflurane, but room air or mixtures of oxygen with air or nitrous oxide are also being used. Anesthesia is therefore administered using different fractions of inspired oxygen (FiO2), and this may have consequences for the outcome of experiments. The aim of the present study was to investigate the influence of FiO2on rat hind limb ischemia/reperfusion injury and to refine the used inhalation anesthesia. Male Wistar rats were subjected to 3.5 h of ischemia and 2 h of reperfusion, and divided into three groups according to FiO2in the O2/air/isoflurane anesthesia gas mixture: 40%, 60%, and 100% O2. Normal, healthy rats were used as controls. Muscle edema and creatine kinase MM, a marker for myocyte necrosis, were significantly increased with 40% FiO2as compared with 100% FiO2( P 2group as compared with 40% O2. No significant differences were detected for other parameters, such as the oxidative stress markers malondialdehyde and superoxide dismutase. We conclude that a refined inhalation anesthesia setting using 40% FiO2, reflecting more or less the clinical situation, leads to a more severe and more physiologically relevant reperfusion injury than higher FiO2.Oxidative stress did not correlate with FiO2and seemed to have no influence on reperfusion injury.
- Published
- 2015
109. Pathological Characteristics of Muscle Rejection and Dysfunction in a Swine Vascularized Composite Allotransplantation Model and a Scoring Proposal: A Pilot Study.
- Author
-
Zhang L, He C, Arenas Hoyos I, Banz Y, Zubler C, Hirsiger S, Lese I, Constantinescu M, Rieben R, de Brot S, and Olariu R
- Abstract
Competing Interests: The authors declare no conflicts of interest.
- Published
- 2024
- Full Text
- View/download PDF
110. Complement, Coagulation, and Fibrinolysis: The Role of the Endothelium and Its Glycocalyx Layer in Xenotransplantation.
- Author
-
Gultom M and Rieben R
- Subjects
- Humans, Animals, Endothelium, Vascular metabolism, Complement System Proteins metabolism, Complement System Proteins physiology, Endothelial Cells metabolism, Graft Survival, Heterografts, Glycocalyx metabolism, Glycocalyx physiology, Transplantation, Heterologous, Blood Coagulation physiology, Fibrinolysis physiology, Graft Rejection
- Abstract
In xenotransplantation, the vascular endothelium serves as the first point of contact between the recipient's blood and the transplanted donor organ. The loss of the endothelium's ability to control the plasma cascades plays a critical role in the dysregulation of the complement and coagulation systems, which greatly contribute to graft rejection and hinder long-term xenograft survival. Although it is known that an intact glycocalyx is a key feature of a resting endothelium that exhibits optimal anticoagulant and anti-inflammatory properties, the role of the endothelial glycocalyx in xenotransplantation is barely investigated so far. Here, we discuss the central role of endothelial cells and the sugar-rich endothelial glycocalyx in regulating the plasma cascades, and how the loss of these functions contributes to graft damage and rejection. We highlight the importance of preserving the regulatory functions of both endothelial cells and the glycocalyx as strategies to improve xenotransplantation outcomes., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2024 Gultom and Rieben.)
- Published
- 2024
- Full Text
- View/download PDF
111. Assessment of NK cytotoxicity and interactions with porcine endothelial cells by live-cell imaging in 2D static and 3D microfluidic systems.
- Author
-
Tran T, Galdina V, Urquidi O, Reis Galvão D, Rieben R, Adachi TBM, Puga Yung GL, and Seebach JD
- Subjects
- Animals, Swine, Humans, Cell Adhesion, Cytotoxicity, Immunologic, Microfluidics methods, Microfluidics instrumentation, Cells, Cultured, Cell Communication immunology, Apoptosis, Cell Tracking methods, Killer Cells, Natural immunology, Endothelial Cells, Cell Movement
- Abstract
Natural Killer (NK) cells are pivotal in immune responses to viral infections, malignancies, autoimmune diseases, and transplantation. Assessment of NK cell adhesion, migration, and cytotoxicity is fundamental for in vitro studies. We propose a novel live-cell tracking method that addresses these three major aspects of NK cell function using human NK cells and primary porcine aortic endothelial cells (PAECs) in two-dimensional (2D) static assays and an in-house cylindrical 3D microfluidic system. The results showed a significant increase of NK cytotoxicity against pTNF-activated PAECs, with apoptotic cell death observed in the majority of dead cells, while no difference was observed in the conventional Delfia assay. Computed analysis of NK cell trajectories revealed distinct migratory behaviors, including trajectory length, diameter, average speed, and arrest coefficient. In 3D microfluidic experiments, NK cell attachment to pTNF-activated PAECs substantially increased, accompanied by more dead PAECs compared to control conditions. NK cell trajectories showed versatile migration in various directions and interactions with PAECs. This study uniquely demonstrates NK attachment and killing in a 3D system that mimics blood vessel conditions. Our microscope method offers sensitive single-cell level results, addressing diverse aspects of NK functions. It is adaptable for studying other immune and target cells, providing insights into various biological questions., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
112. Comparable bleeding and inflammation outcomes between heparin-coated and uncoated minimal invasive extracorporeal circuits in isolated coronary artery bypass surgery - A double-blinded randomized control trial.
- Author
-
Jenni H, Kovacic B, Mihalj M, Huber M, Rieben R, Carrel T, Siepe M, Kadner A, and Erdoes G
- Abstract
Objective: Minimally invasive extracorporeal circulation has been shown to be non-inferior or even superior to conventional cardiopulmonary bypass circuits in isolated coronary artery bypass grafting, but there is little evidence whether the addition of a heparin-coated circuit can further reduce the inflammatory response and amount of bleeding in these patients., Methods: A single-center randomized control trial enrolled 49 adult patients scheduled to undergo isolated coronary artery bypass grafting with minimally invasive extracorporeal circulation (MiECC) between January 2015 and December 2018. Patients were randomized 1:1 to either the heparin-coated circuit group, or the uncoated (control) circuit group. The primary outcome was chest tube output 18 h after weaning from MiECC, and secondary outcomes included inflammatory (TNF-α, IL-6, IL-8, IL-10) and complement (C3a, C4d, C5a, sC5b-9) biomarkers, platelet count and function (D2D, TAT, SDC1, PF4), number of transfused blood products, and 30-day survival., Results: Patients were randomized to undergo myocardial revascularization using heparin-coated circuits ( n = 25), and to the uncoated MiECC circuit ( n = 24), with comparable baseline demographics. No significant difference was observed in chest tube output and for all secondary outcomes. IL-6 and IL-8 were increased from baseline at 18 h after weaning (effect size 0.29 and 0.05, respectively) and sC5b-9 was lower (effect size 0.11) in the heparin-coated than in the uncoated MiECC, although not significantly different., Conclusions: Compared with an uncoated MiECC circuit, heparin-coated MiECC circuit was not associated with a reduction in postoperative bleeding, transfusion, inflammation, complement activation, and platelet biomarkers, following isolated coronary artery bypass grafting., Competing Interests: Declaration of conflicting interestsThe author(s) declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: MM has received a non-profit fellowship grant from the Novartis Foundation for Medical-Biological Research. Other authors declare that the research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest.
- Published
- 2024
- Full Text
- View/download PDF
113. Immune Rejection of Cartilage in a Swine Vascularized Composite Allotransplantation Model.
- Author
-
Zhang L, Arenas Hoyos I, Helmer A, Banz Y, Haenni B, Lese I, Constantinescu M, Rieben R, and Olariu R
- Subjects
- Animals, Swine, Cartilage transplantation, Cartilage, Articular pathology, Disease Models, Animal, Graft Rejection immunology, Vascularized Composite Allotransplantation
- Abstract
Background: Cartilage is a crucial tissue in vascularized composite allotransplantation (VCA) and plays a pivotal role in restoring motor function, especially in joint allotransplantation. Nevertheless, our understanding of immune rejection in cartilage remains limited and contentious. This study seeks to investigate the immune rejection of cartilage in a large animal model of VCA., Methods: Cartilage, including articular cartilage and meniscus, as well as skin, muscle and lymph node, was retrieved from a swine heterotopic VCA graft when the skin of the graft suffered from grade III-IV rejection. Histologic examination, transmission electron microscopy and immunofluorescent staining were used to investigate immune rejection., Results: Histologic examination revealed the infiltration of inflammatory cells and tissue destruction in cartilage. Transmission electron microscopy confirmed tissue damage and necrosis in cartilage. However, cartilage exhibited milder tissue damage when compared to rejected skin and muscle. Immunofluorescent staining revealed the activation of both the innate and adaptive immune systems, accompanied by an up-regulation of cell death biomarkers, including apoptosis and pyroptosis, in the rejected cartilage., Conclusion: Our study demonstrates that cartilage is not immunologically privileged and undergoes immune rejection concurrently with skin and muscle in the VCA graft, though with less severe inflammation and rejection., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The authors declare that they have no competing interests., (Copyright © 2024. Published by Elsevier Inc.)
- Published
- 2024
- Full Text
- View/download PDF
114. Neutrophil extracellular traps and citrullinated fibrinogen contribute to injury in a porcine model of limb ischemia and reperfusion.
- Author
-
Zollet V, Arenas Hoyos I, Hirsiger S, Brahim BB, Petrucci MF, Casoni D, Wang J, Spirig R, Nettelbeck K, Garcia L, Fuest L, Vögelin E, Constantinescu M, and Rieben R
- Subjects
- Animals, Swine, Neutrophils immunology, Neutrophils metabolism, Ischemia metabolism, Muscle, Skeletal metabolism, Muscle, Skeletal pathology, Muscle, Skeletal immunology, Muscle, Skeletal blood supply, Hindlimb blood supply, Protein-Arginine Deiminase Type 4 metabolism, Extracellular Traps metabolism, Extracellular Traps immunology, Citrullination, Fibrinogen metabolism, Reperfusion Injury metabolism, Reperfusion Injury immunology, Disease Models, Animal
- Abstract
Background: Ischemia/reperfusion injury (IRI) is a complex pathological process, triggered by the restoration of blood flow following an interrupted blood supply. While restoring the blood flow is the only option to salvage the ischemic tissue, reperfusion after a prolonged period of ischemia initiates IRI, triggering a cascade of inflammatory responses ultimately leading to neutrophil recruitment to the inflamed tissue, where they release neutrophil extracellular traps (NETs). NETs are web-like structures of decondensed chromatin and neutrophilic proteins, including peptidyl-arginine deiminase 2 and 4 (PAD2, PAD4), that, once outside, can citrullinate plasma proteins, irreversibly changing their conformation and potentially their function. While the involvement of NETs in IRI is known mainly from rodent models, we aimed to determine the effect of NET formation and especially PADs-mediated extracellular protein citrullination in a porcine model of limb IRI., Methods: We conducted our study on amputated pig forelimbs exposed to 1 h or 9 h of ischemia and then reperfused in vivo for 12 h. Limb weight, edema formation, compartmental pressure were measured, and skeletal muscle was analyzed by immunofluorescence (TUNEL assay and dystrophin staining) to evaluate tissue damage. Fibrin tissue deposition, complement deposition and NETs were investigated by immunofluorescence. Citrullinated plasma proteins were immunoprecipitated and citrullinated fibrinogen was identified in the plasma by Western blot and in the tissue by immunofluorescence and Western blot., Results: Our data consolidate the involvement of NETs in a porcine model of limb IRI, correlating their contribution to damage extension with the duration of the ischemic time. We found a massive infiltration of NETs in the group subjected to 9 h ischemia compared to the 1 h and citrullinated fibrinogen levels, in plasma and tissue, were higher in 9 h ischemia group. We propose fibrinogen citrullination as one of the mechanisms contributing to the worsening of IRI. NETs and protein citrullination represent a potential therapeutic target, but approaches are still a matter of debate. Here we introduce the idea of therapeutic approaches against citrullination to specifically inhibit PADs extracellularly, avoiding the downstream effects of hypercitrullination and keeping PADs' and NETs' intracellular regulatory functions., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2024 Zollet, Arenas Hoyos, Hirsiger, Brahim, Petrucci, Casoni, Wang, Spirig, Nettelbeck, Garcia, Fuest, Vögelin, Constantinescu and Rieben.)
- Published
- 2024
- Full Text
- View/download PDF
115. Mechanical and thermal thresholds before and after application of a conditioning stimulus in healthy Göttingen Minipigs.
- Author
-
Petrucci M, Spadavecchia C, Rieben R, and Casoni D
- Subjects
- Animals, Swine, Male, Female, Reproducibility of Results, Pain Measurement methods, Pain, Postoperative physiopathology, Myocardial Infarction physiopathology, Swine, Miniature, Pain Threshold physiology
- Abstract
Minipigs are widely used in biomedical research for translational studies. However, information about pain elicited by experimental procedures is lacking. Non-invasive methods as quantitative sensory testing and conditioned pain modulation are particularly attractive. Our overarching aim was to explore and refine these methods for assessing post-operative pain in minipigs after myocardial infarction. As first step, we aimed at defining mechanical and thermal thresholds in healthy adults Göttingen Minipigs, evaluating their reliability, and testing their modifications after the application of a conditioning stimulus. Thresholds were assessed at different body sites before and after a painful conditioning stimulus (CS) (cuffed tourniquet) and sham CS (uncuffed tourniquet) in eleven animals. Thresholds' reliability was assessed using interclass correlation coefficient (ICC). The effect of the CS was assessed calculating absolute change, percentage change of the thresholds and standard error of measurement. Baseline mechanical thresholds (Newton) were: left hindlimb 81 [73; 81]; left forearm 81 [72.1; 81]; right forearm 81 [76; 81]; left chest 80.5 [68; 81]; right chest 81 [76.5; 81]; left neck 81 [70.3; 81]; right neck 74.8 [62.3; 80.5]. Reliability of mechanical thresholds was good at right chest (ICC = 0.835) and moderate at left chest (ICC = 0.591), left hindlimb (ICC = 0.606) and left neck (ICC = 0.518). Thermal thresholds showed poor reliability in all the tested sites. A modulatory effect was present at right chest, but it was seen when both a painful CS and a sham CS was applied. Minipigs tendentially showed a pro-nociceptive profile (i.e. conditioning pain facilitation). The measured thresholds are a reference for future trials in this species. Mechanical thresholds showed to be more reliable and, therefore, more useful, than thermal ones. The pain facilitation might be explained by the phenomenon of stress induced hyperalgesia, but this finding needs to be further investigated with a stricter paradigm., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2024 Petrucci et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF
116. Combination of Anti-CD40 and Anti-CD40L Antibodies as Co-Stimulation Blockade in Preclinical Cardiac Xenotransplantation.
- Author
-
Bender M, Abicht JM, Reichart B, Neumann E, Radan J, Mokelke M, Buttgereit I, Leuschen M, Wall F, Michel S, Ellgass R, Steen S, Paskevicius A, Lange A, Kessler B, Kemter E, Klymiuk N, Denner J, Godehardt AW, Tönjes RR, Burgmann JM, Figueiredo C, Milusev A, Zollet V, Salimi-Afjani N, Despont A, Rieben R, Ledderose S, Walz C, Hagl C, Ayares D, Wolf E, Schmoeckel M, Brenner P, Binder U, Gebauer M, Skerra A, and Längin M
- Abstract
The blockade of the CD40/CD40L immune checkpoint is considered essential for cardiac xenotransplantation. However, it is still unclear which single antibody directed against CD40 or CD40L (CD154), or which combination of antibodies, is better at preventing organ rejection. For example, the high doses of antibody administered in previous experiments might not be feasible for the treatment of humans, while thrombotic side effects were described for first-generation anti-CD40L antibodies. To address these issues, we conducted six orthotopic pig-to-baboon cardiac xenotransplantation experiments, combining a chimeric anti-CD40 antibody with an investigational long-acting PASylated anti-CD40L Fab fragment. The combination therapy effectively resulted in animal survival with a rate comparable to a previous study that utilized anti-CD40 monotherapy. Importantly, no incidence of thromboembolic events associated with the administration of the anti-CD40L PAS-Fab was observed. Two experiments failed early because of technical reasons, two were terminated deliberately after 90 days with the baboons in excellent condition and two were extended to 120 and 170 days, respectively. Unexpectedly, and despite the absence of any clinical signs, histopathology revealed fungal infections in all four recipients. This study provides, for the first time, insights into a combination therapy with anti-CD40/anti-CD40L antibodies to block this immune checkpoint.
- Published
- 2024
- Full Text
- View/download PDF
117. Prolongation of the Time Window From Traumatic Limb Amputation to Replantation From 6 to 33 Hours Using Ex Vivo Limb Perfusion.
- Author
-
Zhang L, Ipaktchi R, Ben Brahim B, Arenas Hoyos I, Jenni H, Dietrich L, Despont A, Shaw-Boden J, Büttiker S, Siegrist D, Gultom M, Parodi C, Garcia Casalta L, Petrucci M, Petruccione I, Mirra A, Nettelbeck K, Wang J, de Brot S, Voegelin E, Casoni D, and Rieben R
- Subjects
- Animals, Swine, Time Factors, Perfusion methods, Procaine pharmacology, Procaine therapeutic use, Potassium Chloride pharmacology, Potassium Chloride therapeutic use, Reperfusion Injury, Forelimb physiopathology, Glucose, Mannitol, Replantation methods, Amputation, Traumatic surgery
- Abstract
Introduction: Continuous extracorporeal perfusion (ECP), or machine perfusion, holds promise for prolonged skeletal muscle preservation in limb ischemia-reperfusion injury. This study aimed to extend the amputation-to-replantation time window from currently 6 hours to 33 hours using a 24-hour ECP approach., Materials and Methods: Six large white pigs underwent surgical forelimb amputation under general anesthesia. After amputation, limbs were kept for 9 hours at room temperature and then perfused by 24-hour ECP with a modified histidine-tryptophan-ketoglutarate (HTK) solution. After ECP, limbs were orthotopically replanted and perfused in vivo for 12 hours. Clinical data, blood, and tissue samples were collected and analyzed., Results: All 6 forelimbs could be successfully replanted and in vivo reperfused for 12 hours after 9 hours of room temperature ischemia followed by 24 hours ECP. Adequate limb perfusion was observed after replantation as shown by thermography and laser Doppler imaging. All pigs survived without severe organ failure, and no significant increase in inflammatory cytokines was found. Macroscopy and histology showed marked interstitial muscular edema of the limbs, whereas myofiber necrosis was not evident, implying the preservation of muscular integrity., Conclusions: The use of a 24-hour ECP has successfully extended limb preservation to 33 hours. The modified histidine-tryptophan-ketoglutarate perfusate demonstrated its ability for muscle protection. This innovative approach not only facilitates limb replantation after combat injuries, surmounting geographical barriers, but also broadens the prospects for well-matched limb allotransplants across countries and continents., (© The Association of Military Surgeons of the United States 2024. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site–for further information please contact journals.permissions@oup.com.)
- Published
- 2024
- Full Text
- View/download PDF
118. A local drug delivery system prolongs graft survival by dampening T cell infiltration and neutrophil extracellular trap formation in vascularized composite allografts.
- Author
-
Arenas Hoyos I, Helmer A, Yerly A, Lese I, Hirsiger S, Zhang L, Casoni D, Garcia L, Petrucci M, Hammer SE, Duckova T, Banz Y, Montani M, Constantinescu M, Vögelin E, Bordon G, Aleandri S, Prost JC, Taddeo A, Luciani P, Rieben R, Sorvillo N, and Olariu R
- Subjects
- Animals, Swine, Immunosuppressive Agents administration & dosage, T-Lymphocytes immunology, Humans, Composite Tissue Allografts immunology, Female, Extracellular Traps immunology, Extracellular Traps drug effects, Graft Survival drug effects, Graft Rejection immunology, Graft Rejection prevention & control, Tacrolimus administration & dosage, Neutrophils immunology, Neutrophils drug effects, Drug Delivery Systems, Vascularized Composite Allotransplantation methods
- Abstract
Introduction: The standard treatment for preventing rejection in vascularized composite allotransplantation (VCA) currently relies on systemic immunosuppression, which exposes the host to well-known side effects. Locally administered immunosuppression strategies have shown promising results to bypass this hurdle. Nevertheless, their progress has been slow, partially attributed to a limited understanding of the essential mechanisms underlying graft rejection. Recent discoveries highlight the crucial involvement of innate immune components, such as neutrophil extracellular traps (NETs), in organ transplantation. Here we aimed to prolong graft survival through a tacrolimus-based drug delivery system and to understand the role of NETs in VCA graft rejection., Methods: To prevent off-target toxicity and promote graft survival, we tested a locally administered tacrolimus-loaded on-demand drug delivery system (TGMS-TAC) in a multiple MHC-mismatched porcine VCA model. Off-target toxicity was assessed in tissue and blood. Graft rejection was evaluated macroscopically while the complement system, T cells, neutrophils and NETs were analyzed in graft tissues by immunofluorescence and/or western blot. Plasmatic levels of inflammatory cytokines were measured using a Luminex magnetic-bead porcine panel, and NETs were measured in plasma and tissue using DNA-MPO ELISA. Lastly, to evaluate the effect of tacrolimus on NET formation, NETs were induced in-vitro in porcine and human peripheral neutrophils following incubation with tacrolimus., Results: Repeated intra-graft administrations of TGMS-TAC minimized systemic toxicity and prolonged graft survival. Nevertheless, signs of rejection were observed at endpoint. Systemically, there were no increases in cytokine levels, complement anaphylatoxins, T-cell subpopulations, or neutrophils during rejection. Yet, tissue analysis showed local infiltration of T cells and neutrophils, together with neutrophil extracellular traps (NETs) in rejected grafts. Interestingly, intra-graft administration of tacrolimus contributed to a reduction in both T-cellular infiltration and NETs. In fact, in-vitro NETosis assessment showed a 62-84% reduction in NETs after stimulated neutrophils were treated with tacrolimus., Conclusion: Our data indicate that the proposed local delivery of immunosuppression avoids off-target toxicity while prolonging graft survival in a multiple MHC-mismatch VCA model. Furthermore, NETs are found to play a role in graft rejection and could therefore be a potential innovative therapeutic target., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2024 Arenas Hoyos, Helmer, Yerly, Lese, Hirsiger, Zhang, Casoni, Garcia, Petrucci, Hammer, Duckova, Banz, Montani, Constantinescu, Vögelin, Bordon, Aleandri, Prost, Taddeo, Luciani, Rieben, Sorvillo and Olariu.)
- Published
- 2024
- Full Text
- View/download PDF
119. Transcriptome profiling of immune rejection mechanisms in a porcine vascularized composite allotransplantation model.
- Author
-
Zhang L, Arenas Hoyos I, Helmer A, Banz Y, Zubler C, Lese I, Hirsiger S, Constantinescu M, Rieben R, Gultom M, and Olariu R
- Subjects
- Animals, Swine, Disease Models, Animal, Hindlimb, Graft Rejection immunology, Graft Rejection genetics, Gene Expression Profiling, Vascularized Composite Allotransplantation, Transcriptome
- Abstract
Background: Vascularized composite allotransplantation (VCA) offers the potential for a biological, functional reconstruction in individuals with limb loss or facial disfigurement. Yet, it faces substantial challenges due to heightened immune rejection rates compared to solid organ transplants. A deep understanding of the genetic and immunological drivers of VCA rejection is essential to improve VCA outcomes., Methods: Heterotopic porcine hindlimb VCA models were established and followed until reaching the endpoint. Skin and muscle samples were obtained from VCA transplant recipient pigs for histological assessments and RNA sequencing analysis. The rejection groups included recipients with moderate pathological rejection, treated locally with tacrolimus encapsulated in triglycerol-monostearate gel (TGMS-TAC), as well as recipients with severe end-stage rejection presenting evident necrosis. Healthy donor tissue served as controls. Bioinformatics analysis, immunofluorescence, and electron microscopy were utilized to examine gene expression patterns and the expression of immune response markers., Results: Our comprehensive analyses encompassed differentially expressed genes, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes pathways, spanning various composite tissues including skin and muscle, in comparison to the healthy control group. The analysis revealed a consistency and reproducibility in alignment with the pathological rejection grading. Genes and pathways associated with innate immunity, notably pattern recognition receptors (PRRs), damage-associated molecular patterns (DAMPs), and antigen processing and presentation pathways, exhibited upregulation in the VCA rejection groups compared to the healthy controls. Our investigation identified significant shifts in gene expression related to cytokines, chemokines, complement pathways, and diverse immune cell types, with CD8 T cells and macrophages notably enriched in the VCA rejection tissues. Mechanisms of cell death, such as apoptosis, necroptosis and ferroptosis were observed and coexisted in rejected tissues., Conclusion: Our study provides insights into the genetic profile of tissue rejection in the porcine VCA model. We comprehensively analyze the molecular landscape of immune rejection mechanisms, from innate immunity activation to critical stages such as antigen recognition, cytotoxic rejection, and cell death. This research advances our understanding of graft rejection mechanisms and offers potential for improving diagnostic and therapeutic strategies to enhance the long-term success of VCA., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2024 Zhang, Arenas Hoyos, Helmer, Banz, Zubler, Lese, Hirsiger, Constantinescu, Rieben, Gultom and Olariu.)
- Published
- 2024
- Full Text
- View/download PDF
120. Tacrolimus-loaded Drug Delivery Systems in Vascularized Composite Allotransplantation: Lessons and Opportunities for Local Immunosuppression.
- Author
-
Ben Brahim B, Arenas Hoyos I, Zhang L, Vögelin E, Olariu R, and Rieben R
- Abstract
Long-term systemic immunosuppression is needed for vascularized composite allotransplantation (VCA). The high rate of acute rejection episodes in the first posttransplant year, the development of chronic rejection, and the adverse effects that come along with this treatment, currently prevent a wider clinical application of VCA. Opportunistic infections and metabolic disturbances are among the most observed side effects in VCA recipients. To overcome these challenges, local immunosuppression using biomaterial-based drug delivery systems (DDS) have been developed. The aim of these systems is to provide high local concentrations of immunosuppressive drugs while reducing their systemic load. This review provides a summary of recently investigated local DDS with different mechanisms of action such as on-demand, ultrasound-sensitive, or continuous drug delivery. In preclinical models, ranging from rodent to porcine and nonhuman primate models, this approach has been shown to reduce systemic tacrolimus (TAC) load and adverse effects, while prolonging graft survival. Localized immunosuppression using biomaterial-based DDS represents an encouraging approach to enhance graft survival and reduce toxic side effects of immunosuppressive drugs in VCA patients. Preclinical models using TAC-releasing DDS have demonstrated high local immunosuppressive effects with a low systemic burden. However, to reduce acute rejection events in translational animal models or in the clinical reality, the use of additional low-dose systemic TAC treatment may be envisaged. Patients may benefit through efficient graft immunosuppression and survival with negligible systemic adverse effects, resulting in better compliance and quality of life., Competing Interests: The authors declare no conflicts of interest., (Copyright © 2024 The Author(s). Published by Wolters Kluwer Health, Inc.)
- Published
- 2024
- Full Text
- View/download PDF
121. Bioglass/ceria nanoparticle hybrids for the treatment of seroma: a comparative long-term study in rats.
- Author
-
Pais MA, Papanikolaou A, Hoyos IA, Nißler R, De Brot S, Gogos A, Rieben R, Constantinescu MA, Matter MT, Herrmann IK, and Lese I
- Abstract
Background: Seroma formation is a common postoperative complication. Fibrin-based glues are typically employed in an attempt to seal the cavity. Recently, the first nanoparticle (NP)-based treatment approaches have emerged. Nanoparticle dispersions can be used as tissue glues, capitalizing on a phenomenon known as 'nanobridging'. In this process, macromolecules such as proteins physically adsorb onto the NP surface, leading to macroscopic adhesion. Although significant early seroma reduction has been shown, little is known about long-term efficacy of NPs. The aim of this study was to assess the long-term effects of NPs in reducing seroma formation, and to understand their underlying mechanism. Methods: Seroma was surgically induced bilaterally in 20 Lewis rats. On postoperative day (POD) 7, seromas were aspirated on both sides. In 10 rats, one side was treated with NPs, while the contralateral side received only NP carrier solution. In the other 10 rats, one side was treated with fibrin glue, while the other was left untreated. Seroma fluid, blood and tissue samples were obtained at defined time points. Biochemical, histopathological and immunohistochemical assessments were made. Results: NP-treated sides showed no macroscopically visible seroma formation after application on POD 7, in stark contrast to the fibrin-treated sides, where 60% of the rats had seromas on POD 14, and 50% on POD 21. At the endpoint (POD 42), sides treated with nanoparticles (NPs) exhibited significant macroscopic differences compared to other groups, including the absence of a cavity, and increased fibrous adhesions. Histologically, there were more macrophage groupings and collagen type 1 (COL1) deposits in the superficial capsule on NP-treated sides. Conclusion: NPs not only significantly reduced early manifestations of seroma and demonstrated an anti-inflammatory response, but they also led to increased adhesion formation over the long term, suggesting a decreased risk of seroma recurrence. These findings highlight both the adhesive properties of NPs and their potential for clinical therapy., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2024 Pais, Papanikolaou, Hoyos, Nißler, De Brot, Gogos, Rieben, Constantinescu, Matter, Herrmann and Lese.)
- Published
- 2024
- Full Text
- View/download PDF
122. Achievement of Target Gain Larger than Unity in an Inertial Fusion Experiment.
- Author
-
Abu-Shawareb H, Acree R, Adams P, Adams J, Addis B, Aden R, Adrian P, Afeyan BB, Aggleton M, Aghaian L, Aguirre A, Aikens D, Akre J, Albert F, Albrecht M, Albright BJ, Albritton J, Alcala J, Alday C, Alessi DA, Alexander N, Alfonso J, Alfonso N, Alger E, Ali SJ, Ali ZA, Allen A, Alley WE, Amala P, Amendt PA, Amick P, Ammula S, Amorin C, Ampleford DJ, Anderson RW, Anklam T, Antipa N, Appelbe B, Aracne-Ruddle C, Araya E, Archuleta TN, Arend M, Arnold P, Arnold T, Arsenlis A, Asay J, Atherton LJ, Atkinson D, Atkinson R, Auerbach JM, Austin B, Auyang L, Awwal AAS, Aybar N, Ayers J, Ayers S, Ayers T, Azevedo S, Bachmann B, Back CA, Bae J, Bailey DS, Bailey J, Baisden T, Baker KL, Baldis H, Barber D, Barberis M, Barker D, Barnes A, Barnes CW, Barrios MA, Barty C, Bass I, Batha SH, Baxamusa SH, Bazan G, Beagle JK, Beale R, Beck BR, Beck JB, Bedzyk M, Beeler RG, Beeler RG, Behrendt W, Belk L, Bell P, Belyaev M, Benage JF, Bennett G, Benedetti LR, Benedict LX, Berger RL, Bernat T, Bernstein LA, Berry B, Bertolini L, Besenbruch G, Betcher J, Bettenhausen R, Betti R, Bezzerides B, Bhandarkar SD, Bickel R, Biener J, Biesiada T, Bigelow K, Bigelow-Granillo J, Bigman V, Bionta RM, Birge NW, Bitter M, Black AC, Bleile R, Bleuel DL, Bliss E, Bliss E, Blue B, Boehly T, Boehm K, Boley CD, Bonanno R, Bond EJ, Bond T, Bonino MJ, Borden M, Bourgade JL, Bousquet J, Bowers J, Bowers M, Boyd R, Boyle D, Bozek A, Bradley DK, Bradley KS, Bradley PA, Bradley L, Brannon L, Brantley PS, Braun D, Braun T, Brienza-Larsen K, Briggs R, Briggs TM, Britten J, Brooks ED, Browning D, Bruhn MW, Brunner TA, Bruns H, Brunton G, Bryant B, Buczek T, Bude J, Buitano L, Burkhart S, Burmark J, Burnham A, Burr R, Busby LE, Butlin B, Cabeltis R, Cable M, Cabot WH, Cagadas B, Caggiano J, Cahayag R, Caldwell SE, Calkins S, Callahan DA, Calleja-Aguirre J, Camara L, Camp D, Campbell EM, Campbell JH, Carey B, Carey R, Carlisle K, Carlson L, Carman L, Carmichael J, Carpenter A, Carr C, Carrera JA, Casavant D, Casey A, Casey DT, Castillo A, Castillo E, Castor JI, Castro C, Caughey W, Cavitt R, Celeste J, Celliers PM, Cerjan C, Chandler G, Chang B, Chang C, Chang J, Chang L, Chapman R, Chapman TD, Chase L, Chen H, Chen H, Chen K, Chen LY, Cheng B, Chittenden J, Choate C, Chou J, Chrien RE, Chrisp M, Christensen K, Christensen M, Christiansen NS, Christopherson AR, Chung M, Church JA, Clark A, Clark DS, Clark K, Clark R, Claus L, Cline B, Cline JA, Cobble JA, Cochrane K, Cohen B, Cohen S, Collette MR, Collins GW, Collins LA, Collins TJB, Conder A, Conrad B, Conyers M, Cook AW, Cook D, Cook R, Cooley JC, Cooper G, Cope T, Copeland SR, Coppari F, Cortez J, Cox J, Crandall DH, Crane J, Craxton RS, Cray M, Crilly A, Crippen JW, Cross D, Cuneo M, Cuotts G, Czajka CE, Czechowicz D, Daly T, Danforth P, Danly C, Darbee R, Darlington B, Datte P, Dauffy L, Davalos G, Davidovits S, Davis P, Davis J, Dawson S, Day RD, Day TH, Dayton M, Deck C, Decker C, Deeney C, DeFriend KA, Deis G, Delamater ND, Delettrez JA, Demaret R, Demos S, Dempsey SM, Desjardin R, Desjardins T, Desjarlais MP, Dewald EL, DeYoreo J, Diaz S, Dimonte G, Dittrich TR, Divol L, Dixit SN, Dixon J, Do A, Dodd ES, Dolan D, Donovan A, Donovan M, Döppner T, Dorrer C, Dorsano N, Douglas MR, Dow D, Downie J, Downing E, Dozieres M, Draggoo V, Drake D, Drake RP, Drake T, Dreifuerst G, Drury O, DuBois DF, DuBois PF, Dunham G, Durocher M, Dylla-Spears R, Dymoke-Bradshaw AKL, Dzenitis B, Ebbers C, Eckart M, Eddinger S, Eder D, Edgell D, Edwards MJ, Efthimion P, Eggert JH, Ehrlich B, Ehrmann P, Elhadj S, Ellerbee C, Elliott NS, Ellison CL, Elsner F, Emerich M, Engelhorn K, England T, English E, Epperson P, Epstein R, Erbert G, Erickson MA, Erskine DJ, Erlandson A, Espinosa RJ, Estes C, Estabrook KG, Evans S, Fabyan A, Fair J, Fallejo R, Farmer N, Farmer WA, Farrell M, Fatherley VE, Fedorov M, Feigenbaum E, Fehrenbach T, Feit M, Felker B, Ferguson W, Fernandez JC, Fernandez-Panella A, Fess S, Field JE, Filip CV, Fincke JR, Finn T, Finnegan SM, Finucane RG, Fischer M, Fisher A, Fisher J, Fishler B, Fittinghoff D, Fitzsimmons P, Flegel M, Flippo KA, Florio J, Folta J, Folta P, Foreman LR, Forrest C, Forsman A, Fooks J, Foord M, Fortner R, Fournier K, Fratanduono DE, Frazier N, Frazier T, Frederick C, Freeman MS, Frenje J, Frey D, Frieders G, Friedrich S, Froula DH, Fry J, Fuller T, Gaffney J, Gales S, Le Galloudec B, Le Galloudec KK, Gambhir A, Gao L, Garbett WJ, Garcia A, Gates C, Gaut E, Gauthier P, Gavin Z, Gaylord J, Geddes CGR, Geissel M, Génin F, Georgeson J, Geppert-Kleinrath H, Geppert-Kleinrath V, Gharibyan N, Gibson J, Gibson C, Giraldez E, Glebov V, Glendinning SG, Glenn S, Glenzer SH, Goade S, Gobby PL, Goldman SR, Golick B, Gomez M, Goncharov V, Goodin D, Grabowski P, Grafil E, Graham P, Grandy J, Grasz E, Graziani FR, Greenman G, Greenough JA, Greenwood A, Gregori G, Green T, Griego JR, Grim GP, Grondalski J, Gross S, Guckian J, Guler N, Gunney B, Guss G, Haan S, Hackbarth J, Hackel L, Hackel R, Haefner C, Hagmann C, Hahn KD, Hahn S, Haid BJ, Haines BM, Hall BM, Hall C, Hall GN, Hamamoto M, Hamel S, Hamilton CE, Hammel BA, Hammer JH, Hampton G, Hamza A, Handler A, Hansen S, Hanson D, Haque R, Harding D, Harding E, Hares JD, Harris DB, Harte JA, Hartouni EP, Hatarik R, Hatchett S, Hauer AA, Havre M, Hawley R, Hayes J, Hayes J, Hayes S, Hayes-Sterbenz A, Haynam CA, Haynes DA, Headley D, Heal A, Heebner JE, Heerey S, Heestand GM, Heeter R, Hein N, Heinbockel C, Hendricks C, Henesian M, Heninger J, Henrikson J, Henry EA, Herbold EB, Hermann MR, Hermes G, Hernandez JE, Hernandez VJ, Herrmann MC, Herrmann HW, Herrera OD, Hewett D, Hibbard R, Hicks DG, Higginson DP, Hill D, Hill K, Hilsabeck T, Hinkel DE, Ho DD, Ho VK, Hoffer JK, Hoffman NM, Hohenberger M, Hohensee M, Hoke W, Holdener D, Holdener F, Holder JP, Holko B, Holunga D, Holzrichter JF, Honig J, Hoover D, Hopkins D, Berzak Hopkins LF, Hoppe M, Hoppe ML, Horner J, Hornung R, Horsfield CJ, Horvath J, Hotaling D, House R, Howell L, Hsing WW, Hu SX, Huang H, Huckins J, Hui H, Humbird KD, Hund J, Hunt J, Hurricane OA, Hutton M, Huynh KH, Inandan L, Iglesias C, Igumenshchev IV, Ivanovich I, Izumi N, Jackson M, Jackson J, Jacobs SD, James G, Jancaitis K, Jarboe J, Jarrott LC, Jasion D, Jaquez J, Jeet J, Jenei AE, Jensen J, Jimenez J, Jimenez R, Jobe D, Johal Z, Johns HM, Johnson D, Johnson MA, Gatu Johnson M, Johnson RJ, Johnson S, Johnson SA, Johnson T, Jones K, Jones O, Jones M, Jorge R, Jorgenson HJ, Julian M, Jun BI, Jungquist R, Kaae J, Kabadi N, Kaczala D, Kalantar D, Kangas K, Karasiev VV, Karasik M, Karpenko V, Kasarky A, Kasper K, Kauffman R, Kaufman MI, Keane C, Keaty L, Kegelmeyer L, Keiter PA, Kellett PA, Kellogg J, Kelly JH, Kemic S, Kemp AJ, Kemp GE, Kerbel GD, Kershaw D, Kerr SM, Kessler TJ, Key MH, Khan SF, Khater H, Kiikka C, Kilkenny J, Kim Y, Kim YJ, Kimko J, Kimmel M, Kindel JM, King J, Kirkwood RK, Klaus L, Klem D, Kline JL, Klingmann J, Kluth G, Knapp P, Knauer J, Knipping J, Knudson M, Kobs D, Koch J, Kohut T, Kong C, Koning JM, Koning P, Konior S, Kornblum H, Kot LB, Kozioziemski B, Kozlowski M, Kozlowski PM, Krammen J, Krasheninnikova NS, Krauland CM, Kraus B, Krauser W, Kress JD, Kritcher AL, Krieger E, Kroll JJ, Kruer WL, Kruse MKG, Kucheyev S, Kumbera M, Kumpan S, Kunimune J, Kur E, Kustowski B, Kwan TJT, Kyrala GA, Laffite S, Lafon M, LaFortune K, Lagin L, Lahmann B, Lairson B, Landen OL, Land T, Lane M, Laney D, Langdon AB, Langenbrunner J, Langer SH, Langro A, Lanier NE, Lanier TE, Larson D, Lasinski BF, Lassle D, LaTray D, Lau G, Lau N, Laumann C, Laurence A, Laurence TA, Lawson J, Le HP, Leach RR, Leal L, Leatherland A, LeChien K, Lechleiter B, Lee A, Lee M, Lee T, Leeper RJ, Lefebvre E, Leidinger JP, LeMire B, Lemke RW, Lemos NC, Le Pape S, Lerche R, Lerner S, Letts S, Levedahl K, Lewis T, Li CK, Li H, Li J, Liao W, Liao ZM, Liedahl D, Liebman J, Lindford G, Lindman EL, Lindl JD, Loey H, London RA, Long F, Loomis EN, Lopez FE, Lopez H, Losbanos E, Loucks S, Lowe-Webb R, Lundgren E, Ludwigsen AP, Luo R, Lusk J, Lyons R, Ma T, Macallop Y, MacDonald MJ, MacGowan BJ, Mack JM, Mackinnon AJ, MacLaren SA, MacPhee AG, Magelssen GR, Magoon J, Malone RM, Malsbury T, Managan R, Mancini R, Manes K, Maney D, Manha D, Mannion OM, Manuel AM, Manuel MJ, Mapoles E, Mara G, Marcotte T, Marin E, Marinak MM, Mariscal DA, Mariscal EF, Marley EV, Marozas JA, Marquez R, Marshall CD, Marshall FJ, Marshall M, Marshall S, Marticorena J, Martinez JI, Martinez D, Maslennikov I, Mason D, Mason RJ, Masse L, Massey W, Masson-Laborde PE, Masters ND, Mathisen D, Mathison E, Matone J, Matthews MJ, Mattoon C, Mattsson TR, Matzen K, Mauche CW, Mauldin M, McAbee T, McBurney M, Mccarville T, McCrory RL, McEvoy AM, McGuffey C, Mcinnis M, McKenty P, McKinley MS, McLeod JB, McPherson A, Mcquillan B, Meamber M, Meaney KD, Meezan NB, Meissner R, Mehlhorn TA, Mehta NC, Menapace J, Merrill FE, Merritt BT, Merritt EC, Meyerhofer DD, Mezyk S, Mich RJ, Michel PA, Milam D, Miller C, Miller D, Miller DS, Miller E, Miller EK, Miller J, Miller M, Miller PE, Miller T, Miller W, Miller-Kamm V, Millot M, Milovich JL, Minner P, Miquel JL, Mitchell S, Molvig K, Montesanti RC, Montgomery DS, Monticelli M, Montoya A, Moody JD, Moore AS, Moore E, Moran M, Moreno JC, Moreno K, Morgan BE, Morrow T, Morton JW, Moses E, Moy K, Muir R, Murillo MS, Murray JE, Murray JR, Munro DH, Murphy TJ, Munteanu FM, Nafziger J, Nagayama T, Nagel SR, Nast R, Negres RA, Nelson A, Nelson D, Nelson J, Nelson S, Nemethy S, Neumayer P, Newman K, Newton M, Nguyen H, Di Nicola JG, Di Nicola P, Niemann C, Nikroo A, Nilson PM, Nobile A, Noorai V, Nora RC, Norton M, Nostrand M, Note V, Novell S, Nowak PF, Nunez A, Nyholm RA, O'Brien M, Oceguera A, Oertel JA, Oesterle AL, Okui J, Olejniczak B, Oliveira J, Olsen P, Olson B, Olson K, Olson RE, Opachich YP, Orsi N, Orth CD, Owen M, Padalino S, Padilla E, Paguio R, Paguio S, Paisner J, Pajoom S, Pak A, Palaniyappan S, Palma K, Pannell T, Papp F, Paras D, Parham T, Park HS, Pasternak A, Patankar S, Patel MV, Patel PK, Patterson R, Patterson S, Paul B, Paul M, Pauli E, Pearce OT, Pearcy J, Pedretti A, Pedrotti B, Peer A, Pelz LJ, Penetrante B, Penner J, Perez A, Perkins LJ, Pernice E, Perry TS, Person S, Petersen D, Petersen T, Peterson DL, Peterson EB, Peterson JE, Peterson JL, Peterson K, Peterson RR, Petrasso RD, Philippe F, Phillion D, Phipps TJ, Piceno E, Pickworth L, Ping Y, Pino J, Piston K, Plummer R, Pollack GD, Pollaine SM, Pollock BB, Ponce D, Ponce J, Pontelandolfo J, Porter JL, Post J, Poujade O, Powell C, Powell H, Power G, Pozulp M, Prantil M, Prasad M, Pratuch S, Price S, Primdahl K, Prisbrey S, Procassini R, Pruyne A, Pudliner B, Qiu SR, Quan K, Quinn M, Quintenz J, Radha PB, Rainer F, Ralph JE, Raman KS, Raman R, Rambo PW, Rana S, Randewich A, Rardin D, Ratledge M, Ravelo N, Ravizza F, Rayce M, Raymond A, Raymond B, Reed B, Reed C, Regan S, Reichelt B, Reis V, Reisdorf S, Rekow V, Remington BA, Rendon A, Requieron W, Rever M, Reynolds H, Reynolds J, Rhodes J, Rhodes M, Richardson MC, Rice B, Rice NG, Rieben R, Rigatti A, Riggs S, Rinderknecht HG, Ring K, Riordan B, Riquier R, Rivers C, Roberts D, Roberts V, Robertson G, Robey HF, Robles J, Rocha P, Rochau G, Rodriguez J, Rodriguez S, Rosen MD, Rosenberg M, Ross G, Ross JS, Ross P, Rouse J, Rovang D, Rubenchik AM, Rubery MS, Ruiz CL, Rushford M, Russ B, Rygg JR, Ryujin BS, Sacks RA, Sacks RF, Saito K, Salmon T, Salmonson JD, Sanchez J, Samuelson S, Sanchez M, Sangster C, Saroyan A, Sater J, Satsangi A, Sauers S, Saunders R, Sauppe JP, Sawicki R, Sayre D, Scanlan M, Schaffers K, Schappert GT, Schiaffino S, Schlossberg DJ, Schmidt DW, Schmit PF, Smidt JM, Schneider DHG, Schneider MB, Schneider R, Schoff M, Schollmeier M, Schroeder CR, Schrauth SE, Scott HA, Scott I, Scott JM, Scott RHH, Scullard CR, Sedillo T, Seguin FH, Seka W, Senecal J, Sepke SM, Seppala L, Sequoia K, Severyn J, Sevier JM, Sewell N, Seznec S, Shah RC, Shamlian J, Shaughnessy D, Shaw M, Shaw R, Shearer C, Shelton R, Shen N, Sherlock MW, Shestakov AI, Shi EL, Shin SJ, Shingleton N, Shmayda W, Shor M, Shoup M, Shuldberg C, Siegel L, Silva FJ, Simakov AN, Sims BT, Sinars D, Singh P, Sio H, Skulina K, Skupsky S, Slutz S, Sluyter M, Smalyuk VA, Smauley D, Smeltser RM, Smith C, Smith I, Smith J, Smith L, Smith R, Smith R, Schölmerich M, Sohn R, Sommer S, Sorce C, Sorem M, Soures JM, Spaeth ML, Spears BK, Speas S, Speck D, Speck R, Spears J, Spinka T, Springer PT, Stadermann M, Stahl B, Stahoviak J, Stanley J, Stanton LG, Steele R, Steele W, Steinman D, Stemke R, Stephens R, Sterbenz S, Sterne P, Stevens D, Stevers J, Still CH, Stoeckl C, Stoeffl W, Stolken JS, Stolz C, Storm E, Stone G, Stoupin S, Stout E, Stowers I, Strauser R, Streckart H, Streit J, Strozzi DJ, Stutz J, Summers L, Suratwala T, Sutcliffe G, Suter LJ, Sutton SB, Svidzinski V, Swadling G, Sweet W, Szoke A, Tabak M, Takagi M, Tambazidis A, Tang V, Taranowski M, Taylor LA, Telford S, Theobald W, Thi M, Thomas A, Thomas CA, Thomas I, Thomas R, Thompson IJ, Thongstisubskul A, Thorsness CB, Tietbohl G, Tipton RE, Tobin M, Tomlin N, Tommasini R, Toreja AJ, Torres J, Town RPJ, Townsend S, Trenholme J, Trivelpiece A, Trosseille C, Truax H, Trummer D, Trummer S, Truong T, Tubbs D, Tubman ER, Tunnell T, Turnbull D, Turner RE, Ulitsky M, Upadhye R, Vaher JL, VanArsdall P, VanBlarcom D, Vandenboomgaerde M, VanQuinlan R, Van Wonterghem BM, Varnum WS, Velikovich AL, Vella A, Verdon CP, Vermillion B, Vernon S, Vesey R, Vickers J, Vignes RM, Visosky M, Vocke J, Volegov PL, Vonhof S, Von Rotz R, Vu HX, Vu M, Wall D, Wall J, Wallace R, Wallin B, Walmer D, Walsh CA, Walters CF, Waltz C, Wan A, Wang A, Wang Y, Wark JS, Warner BE, Watson J, Watt RG, Watts P, Weaver J, Weaver RP, Weaver S, Weber CR, Weber P, Weber SV, Wegner P, Welday B, Welser-Sherrill L, Weiss K, Wharton KB, Wheeler GF, Whistler W, White RK, Whitley HD, Whitman P, Wickett ME, Widmann K, Widmayer C, Wiedwald J, Wilcox R, Wilcox S, Wild C, Wilde BH, Wilde CH, Wilhelmsen K, Wilke MD, Wilkens H, Wilkins P, Wilks SC, Williams EA, Williams GJ, Williams W, Williams WH, Wilson DC, Wilson B, Wilson E, Wilson R, Winters S, Wisoff PJ, Wittman M, Wolfe J, Wong A, Wong KW, Wong L, Wong N, Wood R, Woodhouse D, Woodruff J, Woods DT, Woods S, Woodworth BN, Wooten E, Wootton A, Work K, Workman JB, Wright J, Wu M, Wuest C, Wysocki FJ, Xu H, Yamaguchi M, Yang B, Yang ST, Yatabe J, Yeamans CB, Yee BC, Yi SA, Yin L, Young B, Young CS, Young CV, Young P, Youngblood K, Yu J, Zacharias R, Zagaris G, Zaitseva N, Zaka F, Ze F, Zeiger B, Zika M, Zimmerman GB, Zobrist T, Zuegel JD, and Zylstra AB
- Abstract
On December 5, 2022, an indirect drive fusion implosion on the National Ignition Facility (NIF) achieved a target gain G_{target} of 1.5. This is the first laboratory demonstration of exceeding "scientific breakeven" (or G_{target}>1) where 2.05 MJ of 351 nm laser light produced 3.1 MJ of total fusion yield, a result which significantly exceeds the Lawson criterion for fusion ignition as reported in a previous NIF implosion [H. Abu-Shawareb et al. (Indirect Drive ICF Collaboration), Phys. Rev. Lett. 129, 075001 (2022)PRLTAO0031-900710.1103/PhysRevLett.129.075001]. This achievement is the culmination of more than five decades of research and gives proof that laboratory fusion, based on fundamental physics principles, is possible. This Letter reports on the target, laser, design, and experimental advancements that led to this result.
- Published
- 2024
- Full Text
- View/download PDF
123. Glycocalyx dynamics and the inflammatory response of genetically modified porcine endothelial cells.
- Author
-
Milusev A, Ren J, Despont A, Shaw J, Längin M, Bender M, Abicht JM, Mokelke M, Radan J, Neumann E, Kemter E, Klymiuk N, Ayares D, Wolf E, Reichart B, Sorvillo N, and Rieben R
- Subjects
- Animals, Humans, Swine, Transplantation, Heterologous, Animals, Genetically Modified, Complement System Proteins, Endothelial Cells, Glycocalyx
- Abstract
Xenotransplantation is a promising approach to reduce organ shortage, while genetic modification of donor pigs has significantly decreased the immunogenic burden of xenotransplants, organ rejection is still a hurdle. Genetically modified pig organs are used in xenotransplantation research, and the first clinical pig-to-human heart transplantation was performed in 2022. However, the impact of genetic modification has not been investigated on a cellular level yet. Endothelial cells (EC) and their sugar-rich surface known as the glycocalyx are the first barrier encountering the recipient's immune system, making them a target for rejection. We have previously shown that wild type venous but not arterial EC were protected against heparan sulfate (HS) shedding after activation with human serum or human tumor necrosis factor alpha (TNF𝛼). Using a 2D microfluidic system we investigated the glycocalyx dynamics of genetically modified porcine arterial and venous EC (Gal𝛼1,3 Gal knock-out, transgenic for human CD46 and thrombomodulin, GTKO/hCD46/hTM) after activation with human serum or human TNF𝛼. Interestingly, we observed that GTKO/hCD46/hTM arterial cells, additionally to venous cells, do not shed HS. Unscathed HS on GTKO/hCD46/hTM EC correlated with reduced complement deposition, suggesting that protection against complement activation contributes to maintaining an intact glycocalyx layer on arterial EC. This protection was lost on GTKO/hCD46/hTM cells after simultaneous perfusion with human serum and human TNF𝛼. HS shedding on arterial cells and increased complement deposition on both arterial and venous cells was observed. These findings suggest that GTKO/hCD46/hTM EC revert to a proinflammatory phenotype in an inflammatory xenotransplantation setting, potentially favoring transplant rejection., (© 2023 The Authors. Xenotransplantation published by John Wiley & Sons Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
124. Challenges and opportunities in vascularized composite allotransplantation of joints: a systematic literature review.
- Author
-
Zhang L, Hoyos IA, Zubler C, Rieben R, Constantinescu M, and Olariu R
- Subjects
- Animals, Humans, Transplantation, Homologous, Immune Tolerance, Immunosuppression Therapy methods, Immunosuppressive Agents, Graft Rejection, Vascularized Composite Allotransplantation methods
- Abstract
Background: Joint allotransplantation (JA) within the field of vascularized composite allotransplantation (VCA) holds great potential for functional and non-prosthetic reconstruction of severely damaged joints. However, clinical use of JA remains limited due to the immune rejection associated with all forms of allotransplantation. In this study, we aim to provide a comprehensive overview of the current state of JA through a systematic review of clinical, animal, and immunological studies on this topic., Methods: We conducted a systematic literature review in accordance with the PRISMA guidelines to identify relevant articles in PubMed, Cochrane Library, and Web of Science databases. The results were analyzed, and potential future prospects were discussed in detail., Results: Our review included 14 articles describing relevant developments in JA. Currently, most JA-related research is being performed in small animal models, demonstrating graft survival and functional restoration with short-term immunosuppression. In human patients, only six knee allotransplantations have been performed to date, with all grafts ultimately failing and a maximum graft survival of 56 months., Conclusion: Research on joint allotransplantation has been limited over the last 20 years due to the rarity of clinical applications, the complex nature of surgical procedures, and uncertain outcomes stemming from immune rejection. However, the key to overcoming these challenges lies in extending graft survival and minimizing immunosuppressive side effects. With the emergence of new immunosuppressive strategies, the feasibility and clinical potential of vascularized joint allotransplantation warrants further investigation., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2023 Zhang, Hoyos, Zubler, Rieben, Constantinescu and Olariu.)
- Published
- 2023
- Full Text
- View/download PDF
125. Inflammatory stimuli induce shedding of heparan sulfate from arterial but not venous porcine endothelial cells leading to differential proinflammatory and procoagulant responses.
- Author
-
Milusev A, Despont A, Shaw J, Rieben R, and Sorvillo N
- Subjects
- Animals, Swine, Glycocalyx metabolism, Arteries metabolism, Veins metabolism, Endothelial Cells metabolism, Heparitin Sulfate metabolism
- Abstract
Endothelial dysfunction is an early event of vascular injury defined by a proinflammatory and procoagulant endothelial cell (EC) phenotype. Although endothelial glycocalyx disruption is associated with vascular damage, how various inflammatory stimuli affect the glycocalyx and whether arterial and venous cells respond differently is unknown. Using a 3D round-channel microfluidic system we investigated the endothelial glycocalyx, particularly heparan sulfate (HS), on porcine arterial and venous ECs. Heparan sulfate (HS)/glycocalyx expression was observed already under static conditions on venous ECs while it was flow-dependent on arterial cells. Furthermore, analysis of HS/glycocalyx response after stimulation with inflammatory cues revealed that venous, but not arterial ECs, are resistant to HS shedding. This finding was observed also on isolated porcine vessels. Persistence of HS on venous ECs prevented complement deposition and clot formation after stimulation with tumor necrosis factor α or lipopolysaccharide, whereas after xenogeneic activation no glycocalyx-mediated protection was observed. Contrarily, HS shedding on arterial cells, even without an inflammatory insult, was sufficient to induce a proinflammatory and procoagulant phenotype. Our data indicate that the dimorphic response of arterial and venous ECs is partially due to distinct HS/glycocalyx dynamics suggesting that arterial and venous thrombo-inflammatory disorders require targeted therapies., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
126. The Endothelial Glycocalyx: A Possible Therapeutic Target in Cardiovascular Disorders.
- Author
-
Milusev A, Rieben R, and Sorvillo N
- Abstract
The physiological, anti-inflammatory, and anti-coagulant properties of endothelial cells (ECs) rely on a complex carbohydrate-rich layer covering the luminal surface of ECs, called the glycocalyx. In a range of cardiovascular disorders, glycocalyx shedding causes endothelial dysfunction and inflammation, underscoring the importance of glycocalyx preservation to avoid disease initiation and progression. In this review we discuss the physiological functions of the glycocalyx with particular focus on how loss of endothelial glycocalyx integrity is linked to cardiovascular risk factors, like hypertension, aging, diabetes and obesity, and contributes to the development of thrombo-inflammatory conditions. Finally, we consider the role of glycocalyx components in regulating inflammatory responses and discuss possible therapeutic interventions aiming at preserving or restoring the endothelial glycocalyx and therefore protecting against cardiovascular disease., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Milusev, Rieben and Sorvillo.)
- Published
- 2022
- Full Text
- View/download PDF
127. COVID-19 and the Vasculature: Current Aspects and Long-Term Consequences.
- Author
-
Martínez-Salazar B, Holwerda M, Stüdle C, Piragyte I, Mercader N, Engelhardt B, Rieben R, and Döring Y
- Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was first identified in December 2019 as a novel respiratory pathogen and is the causative agent of Corona Virus disease 2019 (COVID-19). Early on during this pandemic, it became apparent that SARS-CoV-2 was not only restricted to infecting the respiratory tract, but the virus was also found in other tissues, including the vasculature. Individuals with underlying pre-existing co-morbidities like diabetes and hypertension have been more prone to develop severe illness and fatal outcomes during COVID-19. In addition, critical clinical observations made in COVID-19 patients include hypercoagulation, cardiomyopathy, heart arrythmia, and endothelial dysfunction, which are indicative for an involvement of the vasculature in COVID-19 pathology. Hence, this review summarizes the impact of SARS-CoV-2 infection on the vasculature and details how the virus promotes (chronic) vascular inflammation. We provide a general overview of SARS-CoV-2, its entry determinant Angiotensin-Converting Enzyme II (ACE2) and the detection of the SARS-CoV-2 in extrapulmonary tissue. Further, we describe the relation between COVID-19 and cardiovascular diseases (CVD) and their impact on the heart and vasculature. Clinical findings on endothelial changes during COVID-19 are reviewed in detail and recent evidence from in vitro studies on the susceptibility of endothelial cells to SARS-CoV-2 infection is discussed. We conclude with current notions on the contribution of cardiovascular events to long term consequences of COVID-19, also known as "Long-COVID-syndrome". Altogether, our review provides a detailed overview of the current perspectives of COVID-19 and its influence on the vasculature., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Martínez-Salazar, Holwerda, Stüdle, Piragyte, Mercader, Engelhardt, Rieben and Döring.)
- Published
- 2022
- Full Text
- View/download PDF
128. Presence of Donor Lymph Nodes Within Vascularized Composite Allotransplantation Ameliorates VEGF-C-mediated Lymphangiogenesis and Delays the Onset of Acute Rejection.
- Author
-
Olariu R, Tsai C, Abd El Hafez M, Milusev A, Banz Y, Lese I, Leckenby JI, Constantinescu M, Rieben R, Vögelin E, and Taddeo A
- Subjects
- Animals, Lymph Nodes transplantation, Rats, Rats, Inbred BN, Rats, Inbred Lew, Tissue Donors, Transplantation, Homologous, Vascular Endothelial Growth Factor C analysis, Vascular Endothelial Growth Factor Receptor-3 antagonists & inhibitors, Graft Rejection etiology, Lymph Nodes physiology, Lymphangiogenesis physiology, Vascular Endothelial Growth Factor C physiology
- Abstract
Background: The lymphatic system plays an active role in modulating inflammation in autoimmune diseases and organ rejection. In this work, we hypothesized that the transfer of donor lymph node (LN) might be used to promote lymphangiogenesis and influence rejection in vascularized composite allotransplantation (VCA)., Methods: Hindlimb transplantations were performed in which (1) recipient rats received VCA containing donor LN (D:LN+), (2) recipient rats received VCA depleted of all donor LN (D:LN-), and (3) D:LN+ transplantations were followed by lymphangiogenesis inhibition using a vascular endothelial growth factor receptor-3 (VEGFR3) blocker., Results: Our data show that graft rejection started significantly later in D:LN+ transplanted rats as compared to the D:LN- group. Moreover, we observed a higher level of VEGF-C and a quicker and more efficient lymphangiogenesis in the D:LN+ group as compared to the D:LN- group. The presence of donor LN within the graft was associated with reduced immunoactivation in the draining LN and increased frequency of circulating and skin-resident donor T regulatory cells. Blocking of the VEGF-C pathway using a VEGFR3 blocker disrupts the lymphangiogenesis process, accelerates rejection onset, and interferes with donor T-cell migration., Conclusions: This study demonstrates that VCA LNs play a pivotal role in the regulation of graft rejection and underlines the potential of specifically targeting the LN component of a VCA to control graft rejection., Competing Interests: The authors declare no conflicts of interest., (Copyright © 2021 Wolters Kluwer Health, Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
129. Cold non-ischemic heart preservation with continuous perfusion prevents early graft failure in orthotopic pig-to-baboon xenotransplantation.
- Author
-
Längin M, Reichart B, Steen S, Sjöberg T, Paskevicius A, Liao Q, Qin G, Mokelke M, Mayr T, Radan J, Issl L, Buttgereit I, Ying J, Fresch AK, Panelli A, Egerer S, Bähr A, Kessler B, Milusev A, Sfriso R, Rieben R, Ayares D, Murray PJ, Ellgass R, Walz C, Klymiuk N, Wolf E, Abicht JM, and Brenner P
- Subjects
- Animals, Heterografts, Papio, Perfusion, Swine, Transplantation, Heterologous, Heart Transplantation
- Abstract
Background: Successful preclinical transplantations of porcine hearts into baboon recipients are required before commencing clinical trials. Despite years of research, over half of the orthotopic cardiac xenografts were lost during the first 48 hours after transplantation, primarily caused by perioperative cardiac xenograft dysfunction (PCXD). To decrease the rate of PCXD, we adopted a preservation technique of cold non-ischemic perfusion for our ongoing pig-to-baboon cardiac xenotransplantation project., Methods: Fourteen orthotopic cardiac xenotransplantation experiments were carried out with genetically modified juvenile pigs (GGTA1- KO/hCD46/hTBM) as donors and captive-bred baboons as recipients. Organ preservation was compared according to the two techniques applied: cold static ischemic cardioplegia (IC; n = 5) and cold non-ischemic continuous perfusion (CP; n = 9) with an oxygenated albumin-containing hyperoncotic cardioplegic solution containing nutrients, erythrocytes and hormones. Prior to surgery, we measured serum levels of preformed anti-non-Gal-antibodies. During surgery, hemodynamic parameters were monitored with transpulmonary thermodilution. Central venous blood gas analyses were taken at regular intervals to estimate oxygen extraction, as well as lactate production. After surgery, we measured troponine T and serum parameters of the recipient's kidney, liver and coagulation functions., Results: In porcine grafts preserved with IC, we found significantly depressed systolic cardiac function after transplantation which did not recover despite increasing inotropic support. Postoperative oxygen extraction and lactate production were significantly increased. Troponin T, creatinine, aspartate aminotransferase levels were pathologically high, whereas prothrombin ratios were abnormally low. In three of five IC experiments, PCXD developed within 24 hours. By contrast, all nine hearts preserved with CP retained fully preserved systolic function, none showed any signs of PCXD. Oxygen extraction was within normal ranges; serum lactate as well as parameters of organ functions were only mildly elevated. Preformed anti-non-Gal-antibodies were similar in recipients receiving grafts from either IC or CP preservation., Conclusions: While standard ischemic cardioplegia solutions have been used with great success in human allotransplantation over many years, our data indicate that they are insufficient for preservation of porcine hearts transplanted into baboons: Ischemic storage caused severe impairment of cardiac function and decreased tissue oxygen supply, leading to multi-organ failure in more than half of the xenotransplantation experiments. In contrast, cold non-ischemic heart preservation with continuous perfusion reliably prevented early graft failure. Consistent survival in the perioperative phase is a prerequisite for preclinical long-term results after cardiac xenotransplantation., (© 2020 The Authors. Xenotransplantation published by John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
130. Development of vascularized nerve scaffold using perfusion-decellularization and recellularization.
- Author
-
Wüthrich T, Lese I, Haberthür D, Zubler C, Hlushchuk R, Hewer E, Maistriaux L, Gianello P, Lengelé B, Rieben R, Vögelin E, Olariu R, Duisit J, and Taddeo A
- Subjects
- Animals, Endothelial Cells, Extracellular Matrix, Perfusion, Swine, X-Ray Microtomography, Tissue Engineering, Tissue Scaffolds
- Abstract
Introduction: Vascularized nerve grafts (VNG) may offer an advantage in peripheral nerve regeneration by avoiding ischemic damage and central necrosis observed in non-VNG, particularly for the treatment of large and long nerve defects. However, surgical complexity, donor site morbidity and limited nerve availability remain important drawbacks for the clinical use of VNG. Here we explore the potential of perfusion-decellularization for bioengineering a VNG to be used in peripheral nerve reconstruction., Methods: Porcine sciatic nerves were surgically procured along with their vascular pedicle attached. The specimens were decellularized via perfusion-decellularization and preservation of the extracellular matrix (ECM), vascular patency and tissue cytokine contents were examined. Scaffold reendothelialization was conducted with porcine aortic endothelial cells in a perfusion-bioreactor., Results: Morphologic examination of decellularized VNG and analysis of the DNA content demonstrated cell clearance whereas ECM content and structures of the nerve fascicles were preserved. Using 3D micro-computed tomography imaging we observed optimal vasculature preservation in decellularized scaffolds, down to the capillary level. Cytokine quantification demonstrated measurable levels of growth factors after decellularization. Endothelial cell engraftment of the large caliber vessels was observed in reendothelialized scaffolds., Conclusions: In this study we provide evidence that perfusion-decellularization can be used to create vascularized nerve scaffolds in which the vasculature and the ECM component are well preserved. As compared to non-vascularized conduits, engineered vascularized nerve scaffolds may represent an ideal approach for promoting better nerve regeneration in larger nerve defect reconstructions., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2020 Elsevier B.V. All rights reserved.)
- Published
- 2020
- Full Text
- View/download PDF
131. Impact of porcine cytomegalovirus on long-term orthotopic cardiac xenotransplant survival.
- Author
-
Denner J, Längin M, Reichart B, Krüger L, Fiebig U, Mokelke M, Radan J, Mayr T, Milusev A, Luther F, Sorvillo N, Rieben R, Brenner P, Walz C, Wolf E, Roshani B, Stahl-Hennig C, and Abicht JM
- Subjects
- Animals, Animals, Genetically Modified, Cytomegalovirus classification, Cytomegalovirus Infections transmission, Endothelial Cells, Heterografts, Immune System, Immunosuppression Therapy, Immunosuppressive Agents therapeutic use, Interleukin-6 metabolism, Papio, Swine, Transplantation, Heterologous, Tumor Necrosis Factor-alpha metabolism, Cytomegalovirus Infections physiopathology, Graft Survival, Heart Transplantation adverse effects
- Abstract
Xenotransplantation using pig organs has achieved survival times up to 195 days in pig orthotopic heart transplantation into baboons. Here we demonstrate that in addition to an improved immunosuppressive regimen, non-ischaemic preservation with continuous perfusion and control of post-transplantation growth of the transplant, prevention of transmission of the porcine cytomegalovirus (PCMV) plays an important role in achieving long survival times. For the first time we demonstrate that PCMV transmission in orthotopic pig heart xenotransplantation was associated with a reduced survival time of the transplant and increased levels of IL-6 and TNFα were found in the transplanted baboon. Furthermore, high levels of tPA-PAI-1 complexes were found, suggesting a complete loss of the pro-fibrinolytic properties of the endothelial cells. These data show that PCMV has an important impact on transplant survival and call for elimination of PCMV from donor pigs.
- Published
- 2020
- Full Text
- View/download PDF
132. Genetically encoded Ca 2+ -sensor reveals details of porcine endothelial cell activation upon contact with human serum.
- Author
-
Wuensch A, Kameritsch P, Sfriso R, Jemiller EM, Bähr A, Kurome M, Kessler B, Kemter E, Kupatt C, Reichart B, Rieben R, Wolf E, and Klymiuk N
- Subjects
- Animals, Animals, Genetically Modified, Calcium, Cells, Cultured, Humans, Swine, Transplantation, Heterologous, Calcium Signaling, Endothelial Cells cytology, Serum
- Abstract
The activation of the endothelial surface in xenografts is still a poorly understood process and the consequences are unpredictable. The role of Ca
2+ -messaging during the activation of endothelial cells is well recognized and routinely measured by synthetic Ca2+ -sensitive fluorophors. However, these compounds require fresh loading immediately before each experiment and in particular when grown in state-of-the-art 3D cell culture systems, endothelial cells are difficult to access with such sensors. Therefore, we developed transgenic pigs expressing a Ca2+ -sensitive protein and examined its principal characteristics. Primary transgenic endothelial cells stimulated by ATP showed a definite and short influx of Ca2+ into the cytosol, whereas exposure to human serum resulted in a more intense and sustained response. Surprisingly, not all endothelial cells reacted identically to a stimulus, rather activation took place in adjacent cells in a timely decelerated way and with distinct intensities. This effect was again more pronounced when cells were stimulated with human serum. Finally, we show clear evidence that antibody binding alone significantly activated endothelial cells, whereas antibody depletion dramatically reduced the stimulatory potential of serum. Transgenic porcine endothelial cells expressing a Ca2+ -sensor represent an interesting tool to dissect factors inducing activation of porcine endothelial cells after exposure to human blood or serum., (© 2020 The Authors. Xenotransplantation published by John Wiley & Sons Ltd.)- Published
- 2020
- Full Text
- View/download PDF
133. Cyclic peptide FXII inhibitor provides safe anticoagulation in a thrombosis model and in artificial lungs.
- Author
-
Wilbs J, Kong XD, Middendorp SJ, Prince R, Cooke A, Demarest CT, Abdelhafez MM, Roberts K, Umei N, Gonschorek P, Lamers C, Deyle K, Rieben R, Cook KE, Angelillo-Scherrer A, and Heinis C
- Subjects
- Animals, Chlorides adverse effects, Cloning, Molecular, Disease Models, Animal, Drug Discovery, Extracorporeal Membrane Oxygenation methods, Factor XII antagonists & inhibitors, Female, Ferric Compounds adverse effects, Humans, Lung, Male, Mice, Mice, Inbred C57BL, Mice, Knockout, Rabbits, Recombinant Proteins pharmacology, Swine, Anticoagulants pharmacology, Blood Coagulation drug effects, Factor XIIa antagonists & inhibitors, Peptides, Cyclic drug effects, Thrombosis prevention & control
- Abstract
Inhibiting thrombosis without generating bleeding risks is a major challenge in medicine. A promising solution may be the inhibition of coagulation factor XII (FXII), because its knock-out or inhibition in animals reduced thrombosis without causing abnormal bleeding. Herein, we have engineered a macrocyclic peptide inhibitor of activated FXII (FXIIa) with sub-nanomolar activity (K
i = 370 ± 40 pM) and a high stability (t1/2 > 5 days in plasma), allowing for the preclinical evaluation of a first synthetic FXIIa inhibitor. This 1899 Da molecule, termed FXII900, efficiently blocks FXIIa in mice, rabbits, and pigs. We found that it reduces ferric-chloride-induced experimental thrombosis in mice and suppresses blood coagulation in an extracorporeal membrane oxygenation (ECMO) setting in rabbits, all without increasing the bleeding risk. This shows that FXIIa activity is controllable in vivo with a synthetic inhibitor, and that the inhibitor FXII900 is a promising candidate for safe thromboprotection in acute medical conditions.- Published
- 2020
- Full Text
- View/download PDF
134. Pig-to-non-human primate heart transplantation: The final step toward clinical xenotransplantation?
- Author
-
Reichart B, Längin M, Radan J, Mokelke M, Buttgereit I, Ying J, Fresch AK, Mayr T, Issl L, Buchholz S, Michel S, Ellgass R, Mihalj M, Egerer S, Baehr A, Kessler B, Kemter E, Kurome M, Zakhartchenko V, Steen S, Sjöberg T, Paskevicius A, Krüger L, Fiebig U, Denner J, Godehardt AW, Tönjes RR, Milusev A, Rieben R, Sfriso R, Walz C, Kirchner T, Ayares D, Lampe K, Schönmann U, Hagl C, Wolf E, Klymiuk N, Abicht JM, and Brenner P
- Subjects
- Animals, Graft Survival, Humans, Swine, Transplantation, Heterologous, Graft Rejection etiology, Heart Transplantation methods, Tissue Donors
- Abstract
Background: The demand for donated human hearts far exceeds the number available. Xenotransplantation of genetically modified porcine organs provides an alternative. In 2000, an Advisory Board of the International Society for Heart and Lung Transplantation set the benchmark for commencing clinical cardiac xenotransplantation as consistent 60% survival of non-human primates after life-supporting porcine heart transplantations. Recently, we reported the stepwise optimization of pig-to-baboon orthotopic cardiac xenotransplantation finally resulting in consistent success, with 4 recipients surviving 90 (n = 2), 182, and 195 days. Here, we report on 4 additional recipients, supporting the efficacy of our procedure., Results: The first 2 additional recipients succumbed to porcine cytomegalovirus (PCMV) infections on Days 15 and 27, respectively. In 2 further experiments, PCMV infections were successfully avoided, and 3-months survival was achieved. Throughout all the long-term experiments, heart, liver, and renal functions remained within normal ranges. Post-mortem cardiac diameters were slightly increased when compared with that at the time of transplantation but with no detrimental effect. There were no signs of thrombotic microangiopathy. The current regimen enabled the prolonged survival and function of orthotopic cardiac xenografts in altogether 6 of 8 baboons, of which 4 were now added. These results exceed the threshold set by the Advisory Board of the International Society for Heart and Lung Transplantation., Conclusions: The results of our current and previous experimental cardiac xenotransplantations together fulfill for the first time the pre-clinical efficacy suggestions. PCMV-positive donor animals must be avoided., (Copyright © 2020. Published by Elsevier Inc.)
- Published
- 2020
- Full Text
- View/download PDF
135. Exascale applications: skin in the game.
- Author
-
Alexander F, Almgren A, Bell J, Bhattacharjee A, Chen J, Colella P, Daniel D, DeSlippe J, Diachin L, Draeger E, Dubey A, Dunning T, Evans T, Foster I, Francois M, Germann T, Gordon M, Habib S, Halappanavar M, Hamilton S, Hart W, Henry Huang Z, Hungerford A, Kasen D, Kent PRC, Kolev T, Kothe DB, Kronfeld A, Luo Y, Mackenzie P, McCallen D, Messer B, Mniszewski S, Oehmen C, Perazzo A, Perez D, Richards D, Rider WJ, Rieben R, Roche K, Siegel A, Sprague M, Steefel C, Stevens R, Syamlal M, Taylor M, Turner J, Vay JL, Voter AF, Windus TL, and Yelick K
- Abstract
As noted in Wikipedia, skin in the game refers to having 'incurred risk by being involved in achieving a goal', where ' skin is a synecdoche for the person involved, and game is the metaphor for actions on the field of play under discussion'. For exascale applications under development in the US Department of Energy Exascale Computing Project, nothing could be more apt, with the skin being exascale applications and the game being delivering comprehensive science-based computational applications that effectively exploit exascale high-performance computing technologies to provide breakthrough modelling and simulation and data science solutions. These solutions will yield high-confidence insights and answers to the most critical problems and challenges for the USA in scientific discovery, national security, energy assurance, economic competitiveness and advanced healthcare. This article is part of a discussion meeting issue 'Numerical algorithms for high-performance computational science'.
- Published
- 2020
- Full Text
- View/download PDF
136. Xenogeneic Neu5Gc and self-glycan Neu5Ac epitopes are potential immune targets in MS.
- Author
-
Boligan KF, Oechtering J, Keller CW, Peschke B, Rieben R, Bovin N, Kappos L, Cummings RD, Kuhle J, von Gunten S, and Lünemann JD
- Subjects
- Adult, Autoantibodies blood, Autoantibodies cerebrospinal fluid, Biomarkers, Epitopes, Female, Humans, Immunoglobulin G blood, Immunoglobulin G cerebrospinal fluid, Male, Middle Aged, Multiple Sclerosis, Relapsing-Remitting diagnosis, Autoantibodies metabolism, Multiple Sclerosis, Relapsing-Remitting immunology, Multiple Sclerosis, Relapsing-Remitting metabolism, N-Acetylneuraminic Acid immunology, Neuraminic Acids immunology
- Abstract
Objective: To explore the repertoire of glycan-specific immunoglobulin G (IgG) antibodies in treatment-naive patients with relapsing-remitting multiple sclerosis (RRMS)., Methods: A systems-level approach combined with glycan array technologies was used to determine specificities and binding reactivities of glycan-specific IgGs in treatment-naive patients with RRMS compared with patients with noninflammatory and other inflammatory neurologic diseases., Results: We identified a unique signature of glycan-binding IgG in MS with high reactivities to the dietary xenoglycan N-glycolylneuraminic acid (Neu5Gc) and the self-glycan N-acetylneuraminic acid (Neu5Ac). Increased reactivities of serum IgG toward Neu5Gc and Neu5Ac were additionally observed in an independent, treatment-naive cohort of patients with RRMS., Conclusion: Patients with MS show increased IgG reactivities to structurally related xenogeneic and human neuraminic acids. The discovery of these glycan-specific epitopes as immune targets and potential biomarkers in MS merits further investigation., (Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.)
- Published
- 2020
- Full Text
- View/download PDF
137. Viable pigs after simultaneous inactivation of porcine MHC class I and three xenoreactive antigen genes GGTA1, CMAH and B4GALNT2.
- Author
-
Fischer K, Rieblinger B, Hein R, Sfriso R, Zuber J, Fischer A, Klinger B, Liang W, Flisikowski K, Kurome M, Zakhartchenko V, Kessler B, Wolf E, Rieben R, Schwinzer R, Kind A, and Schnieke A
- Subjects
- Animals, Antibodies, Heterophile metabolism, CRISPR-Cas Systems, Cells, Cultured, Complement System Proteins metabolism, HLA Antigens immunology, Heterografts immunology, Histocompatibility Antigens Class I, Humans, Swine, Transplantation, Heterologous, Galactosyltransferases genetics, Graft Rejection immunology, Kidney Transplantation, Mixed Function Oxygenases genetics, N-Acetylgalactosaminyltransferases genetics
- Abstract
Background: Cell surface carbohydrate antigens play a major role in the rejection of porcine xenografts. The most important for human recipients are α-1,3 Gal (Galactose-alpha-1,3-galactose) causing hyperacute rejection, also Neu5Gc (N-glycolylneuraminic acid) and Sd(a) blood group antigens both of which are likely to elicit acute vascular rejection given the known human immune status. Porcine cells with knockouts of the three genes responsible, GGTA1, CMAH and B4GALNT2, revealed minimal xenoreactive antibody binding after incubation with human serum. However, human leucocyte antigen (HLA) antibodies cross-reacted with swine leucocyte antigen class I (SLA-I). We previously demonstrated efficient generation of pigs with multiple xeno-transgenes placed at a single genomic locus. Here we wished to assess whether key xenoreactive antigen genes can be simultaneously inactivated and if combination with the multi-transgenic background further reduces antibody deposition and complement activation., Methods: Multiplex CRISPR/Cas9 gene editing and somatic cell nuclear transfer were used to generate pigs carrying functional knockouts of GGTA1, CMAH, B4GALNT2 and SLA class I. Fibroblasts derived from one- to four-fold knockout animals, and from multi-transgenic cells (human CD46, CD55, CD59, HO1 and A20) with the four-fold knockout were used to examine the effects on human IgG and IgM binding or complement activation in vitro., Results: Pigs were generated carrying four-fold knockouts of important xenoreactive genes. In vitro assays revealed that combination of all four gene knockouts reduced human IgG and IgM binding to porcine kidney cells more effectively than single or double knockouts. The multi-transgenic background combined with GGTA1 knockout alone reduced C3b/c and C4b/c complement activation to such an extent that further knockouts had no significant additional effect., Conclusion: We showed that pigs carrying several xenoprotective transgenes and knockouts of xenoreactive antigens can be readily generated and these modifications will have significant effects on xenograft survival., (© 2019 The Authors. Xenotransplantation published by John Wiley & Sons Ltd.)
- Published
- 2020
- Full Text
- View/download PDF
138. 3D Cell-Culture Models for the Assessment of Anticoagulant and Anti-Inflammatory Properties of Endothelial Cells.
- Author
-
Sfriso R and Rieben R
- Subjects
- Animals, Biological Assay, Biomarkers, Cells, Cultured, Fluorescent Antibody Technique, Humans, Microfluidics methods, Microspheres, Spheroids, Cellular, Transplantation, Heterologous, Anti-Inflammatory Agents metabolism, Anticoagulants metabolism, Cell Culture Techniques, Endothelial Cells metabolism
- Abstract
Endothelial cells (EC) play a crucial role in the pathophysiology of cardiovascular diseases, ischemia/reperfusion injury, and graft rejection in (xeno-)transplantation. In such nonphysiological conditions, EC are known to lose their quiescent phenotype and switch into an actively pro-inflammatory, procoagulant, and anti-fibrinolytic state. This case happens essentially because the endothelial glycocalyx-a layer of proteoglycans and glycoproteins covering the luminal surface of the endothelium-is shed. Heparan sulfate, one of the main components of the endothelial glycocalyx, contributes to its negative charge. In addition, many plasma proteins such as antithrombin III, superoxide dismutase, C1 inhibitor, and growth factors and cytokines bind to heparan sulfate and by this scenario contribute to the establishment of an anticoagulant and anti-inflammatory endothelial surface. Shedding of the glycocalyx results in a loss of plasma proteins from the endothelial surface, and this phenomenon causes the switch in phenotype. Particularly in xenotransplantation, both hyperacute and acute vascular rejection are characterized by coagulation dysregulation, a situation in which EC are the main players.Since many years, EC have been used in vitro in 2D flatbed cell culture models, with or without the application of shear stress. Such models have also been used to assess the effect of human transgenes on complement- and coagulation-mediated damage of porcine EC in the context of xenotransplantation. The methods described in this chapter include the analysis of endothelial cell-blood interactions without the necessity of using anticoagulants as the increased EC surface-to-volume ratio allows for natural anticoagulation of blood. Furthermore, this chapter contains the description of a novel microfluidic in vitro model carrying important features of small blood vessels, such as a 3D round-section geometry, shear stress, and pulsatile flow-all this in a closed circuit, recirculating system aiming at reproducing closely the in vivo situation in small vessels.
- Published
- 2020
- Full Text
- View/download PDF
139. The architecture of the IgG anti-carbohydrate repertoire in primary antibody deficiencies.
- Author
-
Jandus P, Boligan KF, Smith DF, de Graauw E, Grimbacher B, Jandus C, Abdelhafez MM, Despont A, Bovin N, Simon D, Rieben R, Simon HU, Cummings RD, and von Gunten S
- Subjects
- Female, Humans, Male, Autoantigens immunology, Carbohydrates immunology, Epitopes immunology, Immunoglobulin G immunology, Primary Immunodeficiency Diseases immunology
- Abstract
Immune system failure in primary antibody deficiencies (PADs) has been linked to recurrent infections, autoimmunity, and cancer, yet clinical judgment is often based on the reactivity to a restricted panel of antigens. Previously, we demonstrated that the human repertoire of carbohydrate-specific immunoglobulin G (IgG) exhibits modular organization related to glycan epitope structure. The current study compares the glycan-specific IgG repertoires between different PAD entities. Distinct repertoire profiles with extensive qualitative glycan-recognition defects were observed, which are characterized by the common loss of Galα and GalNAc reactivity and disease-specific recognition of microbial antigens, self-antigens, and tumor-associated carbohydrate antigens. Antibody repertoire analysis may provide a useful tool to elucidate the degree and the clinical implications of immune system failure in individual patients., (© 2019 by The American Society of Hematology.)
- Published
- 2019
- Full Text
- View/download PDF
140. Delivery of Rapamycin Using In Situ Forming Implants Promotes Immunoregulation and Vascularized Composite Allograft Survival.
- Author
-
Sutter D, Dzhonova DV, Prost JC, Bovet C, Banz Y, Rahnfeld L, Leroux JC, Rieben R, Vögelin E, Plock JA, Luciani P, Taddeo A, and Schnider JT
- Subjects
- Animals, Composite Tissue Allografts immunology, Composite Tissue Allografts pathology, Drug Delivery Systems, Immunosuppressive Agents pharmacology, Male, Rats, Rats, Inbred Lew, Transplantation Chimera, Transplantation Tolerance immunology, Composite Tissue Allografts drug effects, Graft Rejection prevention & control, Graft Survival drug effects, Hindlimb transplantation, Sirolimus pharmacology, T-Lymphocytes, Regulatory immunology, Vascularized Composite Allotransplantation adverse effects
- Abstract
Vascularized composite allotransplantation (VCA), such as hand and face transplantation, is emerging as a potential solution in patients that suffered severe injuries. However, adverse effects of chronic high-dose immunosuppression regimens strongly limit the access to these procedures. In this study, we developed an in situ forming implant (ISFI) loaded with rapamycin to promote VCA acceptance. We hypothesized that the sustained delivery of low-dose rapamycin in proximity to the graft may promote graft survival and induce an immunoregulatory microenvironment, boosting the expansion of T regulatory cells (T
reg ). In vitro and in vivo analysis of rapamycin-loaded ISFI (Rapa-ISFI) showed sustained drug release with subtherapeutic systemic levels and persistent tissue levels. A single injection of Rapa-ISFI in the groin on the same side as a transplanted limb significantly prolonged VCA survival. Moreover, treatment with Rapa-ISFI increased the levels of multilineage mixed chimerism and the frequency of Treg both in the circulation and VCA-skin. Our study shows that Rapa-ISFI therapy represents a promising approach for minimizing immunosuppression, decreasing toxicity and increasing patient compliance. Importantly, the use of such a delivery system may favor the reprogramming of allogeneic responses towards a regulatory function in VCA and, potentially, in other transplants and inflammatory conditions.- Published
- 2019
- Full Text
- View/download PDF
141. Cytokine profiles of phakic and pseudophakic eyes with primary retinal detachment.
- Author
-
Garweg JG, Zandi S, Pfister I, Rieben R, Skowronska M, and Tappeiner C
- Subjects
- Aged, Biomarkers metabolism, Female, Follow-Up Studies, Humans, Male, Middle Aged, Prognosis, Prospective Studies, Pseudophakia complications, Retinal Detachment complications, Retinal Detachment surgery, Visual Acuity, Vitrectomy, Aqueous Humor metabolism, Cytokines metabolism, Pseudophakia metabolism, Retinal Detachment metabolism
- Abstract
Purpose: To compare the cytokine profiles of phakic (p) and pseudophakic (ps) eyes with primary rhegmatogenous retinal detachment (RD) to eyes with macular holes (MH) and to identify differences in the specific cytokine profiles., Methods: Aqueous humour (AH) and vitreous fluid (VF) were obtained from patients with primary RD without proliferative vitreoretinopathy undergoing vitrectomy. AH and VF of patients with macular holes (MH) served as controls. Forty-three different cytokines were quantified using multiplex cytokine analysis. Intergroup and intragroup comparisons were performed. To control for multiple comparisons, Holm's correction was applied., Results: VF and AH samples of 71 eyes with RD (pRD N = 38; psRD N = 33) and 26 eyes with MH were included. Cytokine levels in psRD and pRD were similar (none with >10-fold difference). The levels of 39 of 43 cytokines in the VF were significantly higher in eyes with RD than in those with MH (>10-fold: CXLC5, CCL26, CCL1, IL-6, CXCL11, CCL7, CCL13, MIG/CXCL9, CCL19 and TGF-β1). In the AH, 23 of 43 cytokines were significantly higher compared to MH (>10-fold: CXCL5, IL-4, IL-6, IL-8/CXCL8 and CCL7)., Conclusion: A complex, but nonspecific cytokine environmental response seems to initiate immunological and profibrotic processes following RD. Relevant differences in the cytokine profiles of eyes with pRD and psRD were not identified, whereas cytokine differences between AH and VF in RD could be explained by upregulation in the vitreous, a higher turn around in the anterior chamber, or differences in inflammatory cascades in both compartments., (© 2018 The Authors. Acta Ophthalmologica published by John Wiley & Sons Ltd on behalf of Acta Ophthalmologica Scandinavica Foundation.)
- Published
- 2019
- Full Text
- View/download PDF
142. Biomarkers for PVR in rhegmatogenous retinal detachment.
- Author
-
Zandi S, Pfister IB, Traine PG, Tappeiner C, Despont A, Rieben R, Skowronska M, and Garweg JG
- Subjects
- Aged, Biomarkers metabolism, Female, Humans, Male, Middle Aged, Retinal Detachment complications, Vitreoretinopathy, Proliferative complications, Vitreoretinopathy, Proliferative diagnosis, Cytokines metabolism, Retinal Detachment metabolism, Vitreoretinopathy, Proliferative metabolism
- Abstract
Purpose: Various profibrotic and proinflammatory cytokines have been found upregulated in uncomplicated primary retinal detachment (pRD), but without providing a uniform picture. Here, we compare the cyto- and chemokine profiles in pRD with and without proliferative vitreoretinopathy (PVR) in an attempt to unravel relevant differences not in single cytokines, but in the cytokine profiles at diagnosis., Methods: Undiluted vitreous fluid (VF) was obtained at the beginning of surgery from 174 eyes with pRD without relevant PVR (maximally grade B; group 1; n = 81) and with moderate or advanced PVR requiring a gas tamponade (group 2; n = 49) or silicon oil filling (group 3; n = 44). VF of eyes undergoing macular hole (MH) surgery served as controls (group 4; n = 26). Forty-three cytokines were quantified in parallel using a multiplex cytokine analysis system (Bioplex). For all comparisons we applied Holm's correction to control for multiple comparisons., Results: 44.9% of group 2 eyes presented grade C1 and 55.1% C2-C3, whereas 86.4% of group 3 eyes exhibited a PVR grade of C2-D. CCL19 was the only cytokine that displayed higher concentrations in the vitreous of eyes with PVR C1 compared to lower PVR grades. Eyes with PVR C2-D showed higher levels of CCL27, CXCL6, IL4, IL16, CXCL10, CCL8, CCL22, MIG/CXCL9, CCL15, CCL19, CCL 23 and CXCL12 compared to controls. Interestingly, no difference of cytokine levels was detected between C1 and C2-D PVR., Conclusions: CCL19 may represent a potential biomarker for early PVR progression that holds promise for future diagnostic and therapeutic applications., Competing Interests: JGG acts as an advisor to several pharmaceutical companies (Abbvie, Alcon, Allergan, Bayer, and Novartis) and contributes to several clinical studies. This does not alter our adherence to PLOS ONE policies on sharing data and materials.
- Published
- 2019
- Full Text
- View/download PDF
143. Author Correction: Consistent success in life-supporting porcine cardiac xenotransplantation.
- Author
-
Längin M, Mayr T, Reichart B, Michel S, Buchholz S, Guethoff S, Dashkevich A, Baehr A, Egerer S, Bauer A, Mihalj M, Panelli A, Issl L, Ying J, Fresch AK, Buttgereit I, Mokelke M, Radan J, Werner F, Lutzmann I, Steen S, Sjöberg T, Paskevicius A, Qiuming L, Sfriso R, Rieben R, Dahlhoff M, Kessler B, Kemter E, Kurome M, Zakhartchenko V, Klett K, Hinkel R, Kupatt C, Falkenau A, Reu S, Ellgass R, Herzog R, Binder U, Wich G, Skerra A, Ayares D, Kind A, Schönmann U, Kaup FJ, Hagl C, Wolf E, Klymiuk N, Brenner P, and Abicht JM
- Abstract
In this Letter, Mayuko Kurome and Valeri Zakhartchenko have been added to the author list (affiliated with Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany). The author list and 'Author contributions' section have been corrected online; see accompanying Amendment.
- Published
- 2019
- Full Text
- View/download PDF
144. Consistent success in life-supporting porcine cardiac xenotransplantation.
- Author
-
Längin M, Mayr T, Reichart B, Michel S, Buchholz S, Guethoff S, Dashkevich A, Baehr A, Egerer S, Bauer A, Mihalj M, Panelli A, Issl L, Ying J, Fresch AK, Buttgereit I, Mokelke M, Radan J, Werner F, Lutzmann I, Steen S, Sjöberg T, Paskevicius A, Qiuming L, Sfriso R, Rieben R, Dahlhoff M, Kessler B, Kemter E, Kurome M, Zakhartchenko V, Klett K, Hinkel R, Kupatt C, Falkenau A, Reu S, Ellgass R, Herzog R, Binder U, Wich G, Skerra A, Ayares D, Kind A, Schönmann U, Kaup FJ, Hagl C, Wolf E, Klymiuk N, Brenner P, and Abicht JM
- Subjects
- Animals, Antibodies analysis, Antibodies blood, Complement System Proteins analysis, Enzymes blood, Fibrin analysis, Galactosyltransferases deficiency, Galactosyltransferases genetics, Heterografts pathology, Humans, Liver enzymology, Male, Membrane Cofactor Protein genetics, Membrane Cofactor Protein metabolism, Myocardium enzymology, Necrosis, Perfusion, Platelet Count, Prothrombin Time, Thrombomodulin genetics, Thrombomodulin metabolism, Time Factors, Heart Transplantation, Heterografts transplantation, Papio, Swine, Transplantation, Heterologous
- Abstract
Heart transplantation is the only cure for patients with terminal cardiac failure, but the supply of allogeneic donor organs falls far short of the clinical need
1-3 . Xenotransplantation of genetically modified pig hearts has been discussed as a potential alternative4 . Genetically multi-modified pig hearts that lack galactose-α1,3-galactose epitopes (α1,3-galactosyltransferase knockout) and express a human membrane cofactor protein (CD46) and human thrombomodulin have survived for up to 945 days after heterotopic abdominal transplantation in baboons5 . This model demonstrated long-term acceptance of discordant xenografts with safe immunosuppression but did not predict their life-supporting function. Despite 25 years of extensive research, the maximum survival of a baboon after heart replacement with a porcine xenograft was only 57 days and this was achieved, to our knowledge, only once6 . Here we show that α1,3-galactosyltransferase-knockout pig hearts that express human CD46 and thrombomodulin require non-ischaemic preservation with continuous perfusion and control of post-transplantation growth to ensure long-term orthotopic function of the xenograft in baboons, the most stringent preclinical xenotransplantation model. Consistent life-supporting function of xenografted hearts for up to 195 days is a milestone on the way to clinical cardiac xenotransplantation7 .- Published
- 2018
- Full Text
- View/download PDF
145. Effects of C1 inhibitor on endothelial cell activation in a rat hind limb ischemia-reperfusion injury model.
- Author
-
Zhang S, Shaw-Boden J, Banz Y, Bongoni AK, Taddeo A, Spirig R, Nolte MW, Cowan PJ, and Rieben R
- Subjects
- Animals, Complement C1r metabolism, Complement C4b metabolism, Disease Models, Animal, E-Selectin metabolism, Edema immunology, Edema metabolism, Edema pathology, Edema prevention & control, Endothelial Cells metabolism, Endothelial Cells pathology, Fibrin metabolism, HMGB1 Protein metabolism, Heparitin Sulfate metabolism, Hindlimb, Immunoglobulin M metabolism, Male, Muscle, Skeletal metabolism, Muscle, Skeletal pathology, Peptide Fragments metabolism, Plasminogen Activator Inhibitor 1 metabolism, Rats, Wistar, Reperfusion Injury immunology, Reperfusion Injury metabolism, Reperfusion Injury pathology, Tissue Survival drug effects, Vascular Cell Adhesion Molecule-1 metabolism, Complement Activation drug effects, Complement C1 Inhibitor Protein pharmacology, Complement Inactivating Agents pharmacology, Endothelial Cells drug effects, Muscle, Skeletal blood supply, Muscle, Skeletal drug effects, Reperfusion Injury prevention & control
- Abstract
Objective: Ischemia-reperfusion (I/R) injury is a major clinical problem linked to vascular surgery. Currently, no drugs to prevent or to treat I/R injury are approved for clinical use. C1 inhibitor (C1 INH) is known to reduce activation of the plasma cascade systems that are involved in the pathophysiologic process of I/R injury. The aim of this study was therefore to investigate the effect of C1 INH on complement deposition and endothelial cell activation in a rat model of hind limb I/R injury., Methods: Male Wistar rats (wild type, bred at the central animal facility, University of Bern), weighing 250 to 320 g, were used. The rats underwent 2-hour ischemia and 24-hour reperfusion by unilateral clamping of the femoral artery and additional use of a tourniquet. Five groups were divided according to intravenous treatment 5 minutes before ischemia: 50 IU/kg C1 INH (n = 5); 100 IU/kg C1 INH (n = 7); vehicle control (n = 5); nontreated control (n = 7); and normal, healthy control without intervention (n = 4). At the end, muscle edema, tissue viability, and histologic features were assessed. Deposition of immunoglobulin M, C1r, C4d, and fibrin and expression of plasminogen activator inhibitor 1, heparan sulfate (HS), E-selectin, and vascular cell adhesion molecule 1 were evaluated by fluorescence staining. In addition, high-mobility group box 1 protein was measured in plasma., Results: Edema formation was reduced by C1 INH at two dosages, mirrored by improved histologic injury scores and preserved muscle viability. Deposition of immunoglobulin M, C4d, and fibrin was significantly decreased by 100 IU/kg C1 INH compared with nontreated controls. Pretreatment with 100 IU/kg C1 INH also significantly reduced HS shedding and expression of plasminogen activator inhibitor 1 as well as plasma levels of high-mobility group box 1 protein., Conclusions: Pretreatment with both 50 and 100 IU/kg C1 INH attenuated reperfusion injury of rat hind limbs. Pretreatment with 100 IU/kg also preserved the endothelial HS layer as well as the natural, profibrinolytic phenotype of the endothelium. Prevention of endothelial cell activation by C1 INH may therefore be a promising strategy to prevent I/R injury in the clinical setting of peripheral vascular diseases and elective surgery on extremities., (Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
146. Novel targeted drug delivery systems to minimize systemic immunosuppression in vascularized composite allotransplantation.
- Author
-
Taddeo A, Tsai C, Vögelin E, and Rieben R
- Subjects
- Humans, Vascularized Composite Allotransplantation methods, Drug Delivery Systems methods, Immunosuppression Therapy methods, Vascularized Composite Allotransplantation adverse effects
- Abstract
Purpose of Review: The long-term adverse effects of immunosuppressive treatment, the high rate of acute rejection and the development of chronic rejection are the main factors preventing a wider clinical application of vascularized composite allotransplantation (VCA). Targeted immunosuppression using innovative drug delivery systems (DDS) may help to overcome these hurdles, increasing therapeutic efficacy while reducing systemic toxicity. This review provides a summary of the recently developed strategies for targeted delivery of immunosuppressive drugs in VCA., Recent Findings: Currently, several innovative strategies for targeted immunosuppression have been designed based on the anatomy and function of the target organ. Site-specific DDS have been developed both for directly accessible organs (i.e. skin, eye and lung) and internal organs (i.e. lymph nodes, liver, nervous system, etc.). In preclinical models, DDS designed for sustained, 'on demand,' or 'on cue' drug release has been shown to promote VCA survival while reducing systemic toxicity. These findings suggest that targeted delivery could increase patient compliance and potentially decrease toxicity in VCA recipients., Summary: Targeted immunosuppression in VCA represents a promising approach for improving patient compliance and graft survival while reducing off-target toxicity, intensity and frequency of acute rejection episodes and risk of chronic rejection. VIDEO ABSTRACT.
- Published
- 2018
- Full Text
- View/download PDF
147. Local Injections of Tacrolimus-loaded Hydrogel Reduce Systemic Immunosuppression-related Toxicity in Vascularized Composite Allotransplantation.
- Author
-
Dzhonova DV, Olariu R, Leckenby J, Banz Y, Prost JC, Dhayani A, Vemula PK, Voegelin E, Taddeo A, and Rieben R
- Subjects
- Animals, Composite Tissue Allografts drug effects, Composite Tissue Allografts immunology, Composite Tissue Allografts pathology, Composite Tissue Allografts transplantation, Disease Models, Animal, Graft Rejection immunology, Graft Rejection pathology, Graft Survival drug effects, Graft Survival immunology, Hindlimb transplantation, Humans, Hydrogels chemistry, Immunosuppression Therapy methods, Injections, Intralesional, Injections, Subcutaneous, Male, Rats, Rats, Inbred BN, Rats, Inbred Lew, Calcineurin Inhibitors administration & dosage, Drug Carriers chemistry, Graft Rejection prevention & control, Immunosuppression Therapy adverse effects, Tacrolimus administration & dosage, Vascularized Composite Allotransplantation adverse effects
- Abstract
Background: Routine application of vascularized composite allotransplantation is hampered by immunosuppression-related health comorbidities. To mitigate these, we developed an inflammation-responsive hydrogel for local immunosuppression. Here, we report on its long-term effect on graft survival, immunological, and toxicological impact., Methods: Brown Norway-to-Lewis rat hindlimb transplantations were treated either systemically with daily injections of 1 mg/kg tacrolimus (TAC) or with subcutaneous intragraft injections of hydrogel containing 7 mg TAC, every 70 days. Animals were monitored for rejection or other pathology for 280 days. Systemic and graft TAC levels, regulatory T cells, and donor cell chimerism were measured periodically. At endpoint, markers for kidney, liver, and metabolic state were compared to naive age-matched rats., Results: Both daily systemic TAC and subcutaneous intragraft TAC hydrogel at 70-day intervals were able to sustain graft survival longer than 280 days in 5 of 6 recipients. In the hydrogel group, 1 graft progressed to grade 3 rejection at postoperative day 149. In systemic TAC group, 1 animal was euthanized due to lymphoma on postoperative day 275. Hydrogel treatment provided stable graft and reduced systemic TAC levels, and a 4 times smaller total TAC dose compared with systemic immunosuppression. Hydrogel-treated animals showed preserved kidney function, absence of malignancies or opportunistic infections and increased hematopoietic chimerism compared with systemic immunosuppression., Conclusions: Our findings demonstrate that localized immunosuppression with TAC hydrogel is a long-term safe and reliable treatment. It may reduce the burden of systemic immunosuppression in vascularized composite allotransplantation, potentially boosting the clinical application of this surgical intervention.
- Published
- 2018
- Full Text
- View/download PDF
148. Multiple genetically modified GTKO/hCD46/HLA-E/hβ2-mg porcine hearts are protected from complement activation and natural killer cell infiltration during ex vivo perfusion with human blood.
- Author
-
Abicht JM, Sfriso R, Reichart B, Längin M, Gahle K, Puga Yung GL, Seebach JD, Rieben R, Ayares D, Wolf E, Klymiuk N, Baehr A, Kind A, Mayr T, and Bauer A
- Subjects
- Animals, Endothelial Cells immunology, Humans, Leukocytes metabolism, Myocardium immunology, Swine, Transplantation, Heterologous methods, Animals, Genetically Modified immunology, Complement Activation immunology, Heart, Heterografts immunology, Killer Cells, Natural immunology
- Abstract
Background: In pig-to-human xenotransplantation, early cellular rejection reactions are mediated by natural killer cells (NK cells). Human NK cells are inhibited by HLA-E via CD94/NKG2A receptors. To protect porcine grafts against human NK cell responses, transgenic GTKO pigs expressing hCD46 and HLA-E have been generated. The aim of this study was to test the effect of this genetic modification on xenogeneic, and in particular human NK cell response, using an ex vivo perfusion model of pig hearts with human blood., Methods: Cardiopleged and explanted genetically modified (gm) pig hearts (GTKO/hCD46/HLA-E/hβ2-microglobulin) and wild-type (wt) controls (n = 6 each) were reperfused and tested in an 8 hours ex vivo perfusion system using freshly drawn human blood. Cardiac function was evaluated during a 165-minute period in working heart mode. Myocardial damage, antibody deposition, complement activation, and coagulation parameters were evaluated histologically at the end of perfusion. The number of NK cells in the perfusate was determined by flow cytometry at baseline and at 8 hours; tissue infiltration by NK cells was quantified by immunofluorescence microscopy using NKp46 staining of frozen sections., Results: Deposition of IgG (1.2 ± 1 × 10
7 vs 8.8 ± 2.9 × 106 ; P < .01), IgM (4.4 ± 3.7 × 106 vs 1.7 ± 1.2 × 106 ; P < .01), and the complement activation product C4b/c (3.5 ± 1.3 × 106 vs 2.3 × 106 ± 9.4 × 105 ; P > .01) was lower in gm than wt hearts. NK cell percentages of leukocytes in the perfusate decreased from 0.94 ± 0.77% to 0.21 ± 0.25% (P = .04) during xenoperfusion of wt hearts. In contrast, the ratio of NK cells did not decrease significantly in the gm hearts. In this group, NK cell myocardial infiltration after 480 minutes of perfusion was lower than in wt organs (2.5 ± 3.7 × 104 /mm3 vs 1.3 ± 1.4 × 105 /mm3 ; P = .0001). The function of gm hearts was better preserved compared to wt organs, as demonstrated by higher cardiac index during the first 2 hours of ex vivo perfusion., Conclusion: GTKO, hCD46, and HLA-E expression in porcine hearts reduced complement deposition, complement dependent injury, and myocardial NK cell infiltration during perfusion with human blood. This tested combination of genetic modifications may minimize damage from acute human-anti-pig rejection reactions and improve myocardial function after xenotransplantation., (© 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.)- Published
- 2018
- Full Text
- View/download PDF
149. Local release of tacrolimus from hydrogel-based drug delivery system is controlled by inflammatory enzymes in vivo and can be monitored non-invasively using in vivo imaging.
- Author
-
Dzhonova D, Olariu R, Leckenby J, Dhayani A, Vemula PK, Prost JC, Banz Y, Taddeo A, and Rieben R
- Subjects
- Animals, Humans, Hydrogels, Immunosuppressive Agents administration & dosage, Immunosuppressive Agents blood, Male, Rats, Rats, Inbred BN, Rats, Inbred Lew, Tacrolimus administration & dosage, Tacrolimus blood, Drug Delivery Systems, Immunosuppressive Agents pharmacokinetics, Inflammation drug therapy, Tacrolimus pharmacokinetics
- Abstract
Background: Local drug delivery systems that adjust the release of immunosuppressive drug in response to the nature and intensity of inflammation represent a promising approach to reduce systemic immunosuppression and its side effects in allotransplantation. Here we aimed to demonstrate that release of tacrolimus from triglycerol monostearate hydrogel is inflammation-dependent in vivo. We further report that by loading the hydrogel with a near-infrared dye, it is possible to monitor drug release non-invasively in an in vivo model of vascularized composite allotransplantation., Materials and Methods: Inflammation was induced by local challenge with lipopolysaccharides in naïve rats 7 days after injection of tacrolimus-loaded hydrogel in the hind limb. Tacrolimus levels in blood and tissues were measured at selected time points. A near-infrared dye was encapsulated in the hydrogel together with tacrolimus in order to monitor hydrogel deposits and drug release in vitro and in vivo in a model of vascularized composite allotransplantation., Results: Injection of lipopolysaccharides led to increased blood and skin tacrolimus levels (p = 0.0076, day 7 vs. day 12 in blood, and p = 0.0007 in treated limbs, 48 h after injection compared to controls). Moreover, lipopolysaccharides-injected animals had higher tacrolimus levels in treated limbs compared to contralateral limbs (p = 0.0003 for skin and p = 0.0053 for muscle). Imaging of hydrogel deposits and tacrolimus release was achieved by encapsulating near-infrared dye in the hydrogel for 160 days. The correlation of tacrolimus and near-infrared dye release from hydrogel was R2 = 0.6297 and R2 = 0.5619 in blood and grafts of transplanted animals respectively and R2 = 0.6066 in vitro., Conclusions: Here we demonstrate the inflammation-responsiveness of a tacrolimus-loaded hydrogel in vivo. Moreover, we show that encapsulating a near-infrared dye in the hydrogel provides a reliable correlation of tacrolimus and dye release from the hydrogel, and an accessible non-invasive method for monitoring drug release from hydrogel deposits., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2018
- Full Text
- View/download PDF
150. Perfusion-decellularization of human ear grafts enables ECM-based scaffolds for auricular vascularized composite tissue engineering.
- Author
-
Duisit J, Amiel H, Wüthrich T, Taddeo A, Dedriche A, Destoop V, Pardoen T, Bouzin C, Joris V, Magee D, Vögelin E, Harriman D, Dessy C, Orlando G, Behets C, Rieben R, Gianello P, and Lengelé B
- Subjects
- Adipocytes cytology, Animals, Biocompatible Materials, Bioreactors, Blood Pressure, Cadaver, DNA analysis, Fluoroscopy, Humans, Leukocytes, Mononuclear cytology, Perfusion, Rats, Stem Cells cytology, Stress, Mechanical, Swine, Ear physiology, Ear surgery, Extracellular Matrix chemistry, Tissue Engineering methods, Tissue Scaffolds chemistry, Tissue Transplantation methods
- Abstract
Introduction: Human ear reconstruction is recognized as the emblematic enterprise in tissue engineering. Up to now, it has failed to reach human applications requiring appropriate tissue complexity along with an accessible vascular tree. We hereby propose a new method to process human auricles in order to provide a poorly immunogenic, complex and vascularized ear graft scaffold., Methods: 12 human ears with their vascular pedicles were procured. Perfusion-decellularization was applied using a SDS/polar solvent protocol. Cell and antigen removal was examined by histology and DNA was quantified. Preservation of the extracellular matrix (ECM) was assessed by conventional and 3D-histology, proteins and cytokines quantifications. Biocompatibility was assessed by implantation in rats for up to 60 days. Adipose-derived stem cells seeding was conducted on scaffold samples and with human aortic endothelial cells whole graft seeding in a perfusion-bioreactor., Results: Histology confirmed cell and antigen clearance. DNA reduction was 97.3%. ECM structure and composition were preserved. Implanted scaffolds were tolerated in vivo, with acceptable inflammation, remodeling, and anti-donor antibody formation. Seeding experiments demonstrated cell engraftment and viability., Conclusions: Vascularized and complex auricular scaffolds can be obtained from human source to provide a platform for further functional auricular tissue engineered constructs, hence providing an ideal road to the vascularized composite tissue engineering approach., Statement of Significance: The ear is emblematic in the biofabrication of tissues and organs. Current regenerative medicine strategies, with matrix from donor tissues or 3D-printed, didn't reach any application for reconstruction, because critically missing a vascular tree for perfusion and transplantation. We previously described the production of vascularized and cell-compatible scaffolds, from porcine ear grafts. In this study, we ---- applied findings directly to human auricles harvested from postmortem donors, providing a perfusable matrix that retains the ear's original complexity and hosts new viable cells after seeding. This approach unlocks the ability to achieve an auricular tissue engineering approach, associated with possible clinical translation., (Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.