R. Anthore, Piotr Szymczak, Bogdan Cichocki, Nicolas Lecoq, François Feuillebois, Groupe de physique des matériaux (GPM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), Institute of Theoretical Physics (INSTITUTE OF THEORETICAL PHYSICS), Université de Varsovie, Physique et mécanique des milieux hétérogenes (UMR 7636) (PMMH), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
From the solution of the creeping-flow equations, the drag force on a sphere becomes infinite when the gap between the sphere and a smooth wall vanishes at constant velocity, so that if the sphere is displaced towards the wall with a constant applied force, contact theoretically may not occur. Physically, the drag is finite for various reasons, one being the particle and wall roughness. Then, for vanishing gap, even though some layers of fluid molecules may be left between the particle and wall roughness peaks, conventionally it may be said that contact occurs. In this paper, we consider the example of a smooth sphere moving towards a rough wall. The roughness considered here consists of parallel periodic wedges, the wavelength of which is small compared with the sphere radius. This problem is considered both experimentally and theoretically. The motion of a millimetre size bead settling towards a corrugated horizontal wall in a viscous oil is measured with laser interferometry giving an accuracy on the displacement of 0.1 m. Several wedge-shaped walls were used, with various wavelengths and wedge angles.From the results, it is observed that the velocity of the sphere is, except for small gaps, similar to that towards a smooth plane that is shifted down from the top of corrugations. Indeed, earlier theories for a shear flow along a corrugated wall found such an equivalent smooth plane. These theories are revisited here. The creeping flow is calculated as a series in the slope of the roughness grooves. The cases of a flow along and across the grooves are considered separately. The shift is larger in the former case. Slightly flattened tops of the wedges used in experiments are also considered in the calculations. It is then demonstrated that the effective shift for the sphere motion is the average of the shifts for shear flows in the two perpendicular directions. A good agreement is found between theory and experiment.