800 results on '"Najmudin Z"'
Search Results
102. Characterisation of a laser plasma betatron source for high resolution x-ray imaging
- Author
-
Finlay, O J, primary, Gruse, J-N, additional, Thornton, C, additional, Allott, R, additional, Armstrong, C D, additional, Baird, C D, additional, Bourgeois, N, additional, Brenner, C, additional, Cipiccia, S, additional, Cole, J M, additional, Gregory, C, additional, Jamison, S, additional, Katzir, Y, additional, Lopes, N C, additional, Mangles, S P D, additional, Murphy, C D, additional, Najmudin, Z, additional, Neely, D, additional, Pickard, L R, additional, Potter, K D, additional, Rajeev, P P, additional, Rusby, D, additional, Selwood, M P, additional, Symes, D R, additional, Underwood, C I D, additional, Wood, J C, additional, Thomas, A G R, additional, and Streeter, M J V, additional
- Published
- 2021
- Full Text
- View/download PDF
103. Laser-induced cavities and solitons in overcritical hydrogen plasma
- Author
-
Pogorelsky, I. V., Polyanskiy, M. N., Babzien, M., Yakimenko, V., Dover, N. P., Palmer, C. A. J., Najmudin, Z., Schreiber, J., Shkolnikov, P., and Dudnikova, G.
- Published
- 2011
- Full Text
- View/download PDF
104. High brightness keV harmonics from relativistically oscillating plasma surfaces
- Author
-
Dromey, B., Adams, D., Kar, S., Bellei, C., Carroll, D. C., Clarke, R. J., Green, J. S., Kneip, S., Markey, K., Nagel, S. R., Simpson, P. T., Willingale, L., McKenna, P., Neely, D., Najmudin, Z., Krushelnick, K., Norreys, P. A., and Zepf, M.
- Published
- 2009
- Full Text
- View/download PDF
105. Development of control mechanisms for a laser wakefield accelerator-driven bremsstrahlung x-ray source for advanced radiographic imaging
- Author
-
Underwood, C. I.D., Baird, C. D., Murphy, C. D., Thornton, C., Finlay, O. J., Streeter, M. J.V., Selwood, M. P., Brierley, N., Cipiccia, S., Gruse, J. N., McKenna, P., Najmudin, Z., Neely, D., Rusby, D., Symes, D. R., and Brenner, C. M.
- Subjects
Physics::Accelerator Physics - Abstract
A high power laser was used to accelerate electrons in a laser-driven wakefield accelerator. The high energy electrons were then used to generate an x-ray beam by passing them through a converter target. This bremsstrahlung source was characterised and used to perform penetrative imaging of industrially relevant samples. The photon spectrum had a critical energy in excess of 100 MeV and a source size smaller than the resolution of the diagnostic (≲150 µm). Simulations indicate a significantly smaller source is achievable. Variations in the x-ray source characteristics were realised through changes to the plasma and converter parameters while simulations confirm the adaptability of the source. Imaging of high areal density objects with 150 µm resolution was performed, demonstrating the unique advantages of this novel source.
- Published
- 2020
106. The laser-hybrid accelerator for radiobiological applications
- Author
-
Aymar, G, Becker, T, Boogert, S, Borghesi, M, Bingham, R, Brenner, C, Burrows, PN, Dascalu, T, Ettlinger, OC, Gibson, S, Greenshaw, T, Gruber, S, Gujral, D, Hardiman, C, Hughes, J, Jones, WG, Kirkby, K, Kurup, A, Lagrange, J-B, Long, K, Luk, W, Matheson, J, McKenna, P, Mclauchlan, R, Najmudin, Z, Lau, HT, Parsons, JL, Pasternak, J, Pozimski, J, Prise, K, Puchalska, M, Ratoff, P, Schettino, G, Shields, W, Smith, S, Thomason, J, Towe, S, Weightman, P, Whyte, C, and Xiao, R
- Subjects
Quantitative Biology::Tissues and Organs ,Physics::Medical Physics ,physics.bio-ph ,Physics::Accelerator Physics ,physics.acc-ph - Abstract
The `Laser-hybrid Accelerator for Radiobiological Applications', LhARA, is conceived as a novel, uniquely-flexible facility dedicated to the study of radiobiology. The technologies demonstrated in LhARA, which have wide application, will be developed to allow particle-beam therapy to be delivered in a completely new regime, combining a variety of ion species in a single treatment fraction and exploiting ultra-high dose rates. LhARA will be a hybrid accelerator system in which laser interactions drive the creation of a large flux of protons or light ions that are captured using a plasma (Gabor) lens and formed into a beam. The laser-driven source allows protons and ions to be captured at energies significantly above those that pertain in conventional facilities, thus evading the current space-charge limit on the instantaneous dose rate that can be delivered. The laser-hybrid approach, therefore, will allow the vast ``terra incognita'' of the radiobiology that determines the response of tissue to ionising radiation to be studied with protons and light ions using a wide variety of time structures, spectral distributions, and spatial configurations at instantaneous dose rates up to and significantly beyond the ultra-high dose-rate `FLASH' regime. It is proposed that LhARA be developed in two stages. In the first stage, a programme of in vitro radiobiology will be served with proton beams with energies between 10MeV and 15MeV. In stage two, the beam will be accelerated using a fixed-field accelerator (FFA). This will allow experiments to be carried out in vitro and in vivo with proton beam energies of up to 127MeV. In addition, ion beams with energies up to 33.4MeV per nucleon will be available for in vitro and in vivo experiments. This paper presents the conceptual design for LhARA and the R&D programme by which the LhARA consortium seeks to establish the facility.
- Published
- 2020
107. Erratum to: EuPRAXIA Conceptual Design Report
- Author
-
Assmann, RW, Weikum, MK, Akhter, T, Alesini, D, Alexandrova, AS, Anania, MP, Andreev, NE, Andriyash, I, Artioli, M, Aschikhin, A, Audet, T, Bacci, A, Barna, IF, Bartocci, S, Bayramian, A, Beaton, A, Beck, A, Bellaveglia, M, Beluze, A, Bernhard, A, Biagioni, A, Bielawski, S, Bisesto, FG, Bonatto, A, Boulton, L, Brandi, F, Brinkmann, R, Briquez, F, Brottier, F, Bruendermann, E, Buescher, M, Buonomo, B, Bussmann, MH, Bussolino, G, Campana, P, Cantarella, S, Cassou, K, Chance, A, Chen, M, Chiadroni, E, Cianchi, A, Cioeta, F, Clarke, JA, Cole, JM, Costa, G, Couprie, M-E, Cowley, J, Croia, M, Cros, B, Crump, PA, D'Arcy, R, Dattoli, G, Del Dotto, A, Delerue, N, Del Franco, M, Delinikolas, P, De Nicola, S, Dias, JM, Di Giovenale, D, Diomede, M, Di Pasquale, E, Di Pirro, G, Di Raddo, G, Dorda, U, Erlandson, AC, Ertel, K, Esposito, A, Falcoz, F, Falone, A, Fedele, R, Ferran Pousa, A, Ferrario, M, Filippi, F, Fils, J, Fiore, G, Fiorito, R, Fonseca, RA, Franzini, G, Galimberti, M, Gallo, A, Galvin, TC, Ghaith, A, Ghigo, A, Giove, D, Giribono, A, Gizzi, LA, Gruener, FJ, Habib, AF, Haefner, C, Heinemann, T, Helm, A, Hidding, B, Holzer, BJ, Hooker, SM, Hosokai, T, Huebner, M, Ibison, M, Incremona, S, Irman, A, Iungo, F, Jafarinia, FJ, Jakobsson, O, Jaroszynski, DA, Jaster-Merz, S, Joshi, C, Kaluza, M, Kando, M, Karger, OS, Karsch, S, Khazanov, E, Khikhlukha, D, Kirchen, M, Kirwan, G, Kitegi, C, Knetsch, A, Kocon, D, Koester, P, Kononenko, OS, Korn, G, Kostyukov, I, Kruchinin, KO, Labate, L, Le Blanc, C, Lechner, C, Lee, P, Leemans, W, Lehrach, A, Li, X, Li, Y, Libov, V, Lifschitz, A, Lindstrom, CA, Litvinenko, V, Lu, W, Lundh, O, Maier, AR, Malka, V, Manahan, GG, Mangles, SPD, Marcelli, A, Marchetti, B, Marcouille, O, Marocchino, A, Marteau, F, Martinez de la Ossa, A, Martins, JL, Mason, PD, Massimo, F, Mathieu, F, Maynard, G, Mazzotta, Z, Mironov, S, Molodozhentsev, AY, Morante, S, Mosnier, A, Mostacci, A, Mueller, A-S, Murphy, CD, Najmudin, Z, Nghiem, PAP, Nguyen, F, Niknejadi, P, Nutter, A, Osterhoff, J, Oumbarek Espinos, D, Paillard, J-L, Papadopoulos, DN, Patrizi, B, Pattathil, R, Pellegrino, L, Petralia, A, Petrillo, V, Piersanti, L, Pocsai, MA, Poder, K, Pompili, R, Pribyl, L, Pugacheva, D, Reagan, BA, Resta-Lopez, J, Ricci, R, Romeo, S, Rossetti Conti, M, Rossi, AR, Rossmanith, R, Rotundo, U, Roussel, E, Sabbatini, L, Santangelo, P, Sarri, G, Schaper, L, Scherkl, P, Schramm, U, Schroeder, CB, Scifo, J, Serafini, L, Sharma, G, Sheng, ZM, Shpakov, V, Siders, CW, Silva, LO, Silva, T, Simon, C, Simon-Boisson, C, Sinha, U, Sistrunk, E, Specka, A, Spinka, TM, Stecchi, A, Stella, A, Stellato, F, Streeter, MJV, Sutherland, A, Svystun, EN, Symes, D, Szwaj, C, Tauscher, GE, Terzani, D, Toci, G, Tomassini, P, Torres, R, Ullmann, D, Vaccarezza, C, Valleau, M, Vannini, M, Vannozzi, A, Vescovi, S, Vieira, JM, Villa, F, Wahlstrom, C-G, Walczak, R, Walker, PA, Wang, K, Welsch, A, Welsch, CP, Weng, SM, Wiggins, SM, Wolfenden, J, Xia, G, Yabashi, M, Zhang, H, Zhao, Y, Zhu, J, Zigler, A, Engineering & Physical Science Research Council (EPSRC), Commission of the European Communities, and Science and Technology Facilities Council (STFC)
- Subjects
Science & Technology ,02 Physical Sciences ,Physics ,Fluids & Plasmas ,Physical Sciences ,Physics, Multidisciplinary ,ddc:530 ,01 Mathematical Sciences ,Applied Physics - Abstract
Figure 20.1 was not correct in the published article. The original article has been corrected. The published apologizes for the inconvenience.
- Published
- 2020
108. Demonstration of repetitive energetic proton generation by ultra-intense laser interaction with a tape target
- Author
-
Dover, N. P., Nishiuchia, M., Sakaki, H., Kondo, K., Lowe, H. F., Alkhimova, M. A., Ditter, E. J., Ettlinger, O. C., Faenov, A. Y., Hata, M., Hicks, G. S., Iwata, N., Kiriyama, H., Koga, J. K., Miyahara, T., Najmudin, Z., Pikuz, T. A., Pirozhkov, A. S., Sagisaka, A., Schramm, U., Sentoku, Y., Watanabe, Y., Ziegler, T., Zeil, K., and Kando, M.
- Abstract
High power laser systems are an attractive driver for compact energetic ion sources. We demonstrate repetitive acceleration at 0.1 Hz of proton beams up to 40 MeV from a reeled tape target irradiated by ultra-high intensities up to 5 × 1021 Wcm 2 and laser energies ≈ 15 J using the J-KAREN-P laser system. We investigate the stability of the source and its behaviour with laser spot focal size. We compare the scaling of proton energy with laser energy to a recently developed analytical model, and also demonstrate that it is possible to reach energies up to 50 MeV on a single shot with a lower laser energy ≈ 10 J by using a thinner target, motivating development of high repetition targetry suitable for thinner targets.
- Published
- 2020
109. Dynamics of laser-driven heavy-ion acceleration clarified by ion charge states
- Author
-
Nishiuchi, M., Dover, N., Hata, M., Sakaki, H., Kondo, K., Lowe, H., Miyahara, T., Kiriyama, H., Koga, J., Iwata, N., Alkhimova, M., Pirozhkov, A., Faenov, A., Pikuz, T., Sagisaka, A., Watanabe, Y., Kando, M., Ditter, E., Ettlinger, O., Hicks, G., Najmudin, Z., Ziegler, T., Zeil, K., Schramm, U., and Sentoku, Y.
- Subjects
Physics::Plasma Physics - Abstract
Motivated by the development of next-generation heavy-ion sources, we have investigated the ionization and acceleration dynamics of an ultraintense laser-driven high-Z silver target, experimentally, numerically, and analytically. Using a novel ion measurement technique allowing us to uniquely identify silver ions, we experimentally demonstrate generation of highly charged silver ions (Z= 45+2−2 ) with energies of >20 MeV/nucleon (>2.2 GeV) from submicron silver targets driven by a laser with intensity 5 × 1021 W/cm 2 , with increasing ion energy and charge state for decreasing target thickness. We show that although target pre-expansion by the unavoidable rising edge of state-of-the-art high-power lasers can limit proton energies, it is advantageous for heavy-ion acceleration. Two-dimensional particle-in-cell simulations show that the Joule heating in the target bulk results in a high temperature (∼10 keV) solid density plasma, leading to the generation of high flux highly charged ions (Z= 40−2 +2, 10 MeV/nucleon) via electron collisional ionization, which are extracted and accelerated with a small divergence by an extreme sheath field at the target rear. However, with reduced target thickness this favorable acceleration is degraded due to the target deformation via laser hole boring, which accompanies higher energy ions with higher charge states but in an uncontrollable manner. Our elucidation of the fundamental processes of high-intensity laser-driven ionization and ion acceleration provides a path for improving the control and parameters of laser-driven heavy-ion sources, a key component for next-generation heavy-ion accelerators.
- Published
- 2020
110. Application of compact laser-driven accelerator X-ray sources for industrial imaging
- Author
-
Gruse, J.-N, Streeter, Matthew, Thornton, C, Armstrong, C.D., Baird, C.D., Bourgeois, N, Cipiccia, S., Finlay, Oliver, Gregory, C.D., Katzir, Y, Lopes, N.C., Mangles, S.P.D, Najmudin, Z, Neely, D, Pickard, L.R., Potter, K.D., Rajeev, P.P., Rusby, D.R., Underwood, C.I.D, Warnett, J.M., Williams, M.A., Wood, J.C., Murphy, C.D., Brenner, C.M., Symes, D.R., Gruse, J.-N, Streeter, Matthew, Thornton, C, Armstrong, C.D., Baird, C.D., Bourgeois, N, Cipiccia, S., Finlay, Oliver, Gregory, C.D., Katzir, Y, Lopes, N.C., Mangles, S.P.D, Najmudin, Z, Neely, D, Pickard, L.R., Potter, K.D., Rajeev, P.P., Rusby, D.R., Underwood, C.I.D, Warnett, J.M., Williams, M.A., Wood, J.C., Murphy, C.D., Brenner, C.M., and Symes, D.R.
- Abstract
X-rays generated by betatron oscillations of electrons in a laser-driven plasma accelerator were characterised and applied to imaging industrial samples. With a 125 TW laser, a low divergence beam with 7.52.6 108 photons mrad−2 per pulse was produced with a synchrotron spectrum with a critical energy of 14.61.3 keV. Radiographs were obtained of a metrology test sample, battery electrodes, and a damage site in a composite material. These results demonstrate the suitability of the source for non-destructive evaluation applications. The potential for industrial implementation of plasma accelerators is discussed.
- Published
- 2020
111. LhARA:The Laser-hybrid Accelerator for Radiobiological Applications
- Author
-
Aymar, G., Becker, T., Boogert, S., Borghesi, M., Bingham, R., Brenner, C., Burrows, P.N., Ettlinger, O.C., Dascalu, T., Gibson, S., Greenshaw, T., Gruber, S., Gujral, D., Hardiman, C., Hughes, J., Jones, W.G., Kirkby, K., Kurup, A., Lagrange, J.-B., Long, K., Luk, W., Matheson, J., McKenna, P., McLauchlan, R., Najmudin, Z., Lau, H.T., Parsons, J.L., Pasternak, J., Pozimski, J., Prise, K., Puchalska, M., Ratoff, P., Schettino, G., Shields, W., Smith, S., Thomason, J., Towe, S., Weightman, P., Whyte, C., Xiao, R., Aymar, G., Becker, T., Boogert, S., Borghesi, M., Bingham, R., Brenner, C., Burrows, P.N., Ettlinger, O.C., Dascalu, T., Gibson, S., Greenshaw, T., Gruber, S., Gujral, D., Hardiman, C., Hughes, J., Jones, W.G., Kirkby, K., Kurup, A., Lagrange, J.-B., Long, K., Luk, W., Matheson, J., McKenna, P., McLauchlan, R., Najmudin, Z., Lau, H.T., Parsons, J.L., Pasternak, J., Pozimski, J., Prise, K., Puchalska, M., Ratoff, P., Schettino, G., Shields, W., Smith, S., Thomason, J., Towe, S., Weightman, P., Whyte, C., and Xiao, R.
- Abstract
The “Laser-hybrid Accelerator for Radiobiological Applications,” LhARA, is conceived as a novel, flexible facility dedicated to the study of radiobiology. The technologies demonstrated in LhARA, which have wide application, will be developed to allow particle-beam therapy to be delivered in a new regimen, combining a variety of ion species in a single treatment fraction and exploiting ultra-high dose rates. LhARA will be a hybrid accelerator system in which laser interactions drive the creation of a large flux of protons or light ions that are captured using a plasma (Gabor) lens and formed into a beam. The laser-driven source allows protons and ions to be captured at energies significantly above those that pertain in conventional facilities, thus evading the current space-charge limit on the instantaneous dose rate that can be delivered. The laser-hybrid approach, therefore, will allow the radiobiology that determines the response of tissue to ionizing radiation to be studied with protons and light ions using a wide variety of time structures, spectral distributions, and spatial configurations at instantaneous dose rates up to and significantly beyond the ultra-high dose-rate “FLASH” regime. It is proposed that LhARA be developed in two stages. In the first stage, a programme of in vitro radiobiology will be served with proton beams with energies between 10 and 15 MeV. In stage two, the beam will be accelerated using a fixed-field alternating-gradient accelerator (FFA). This will allow experiments to be carried out in vitro and in vivo with proton beam energies of up to 127 MeV. In addition, ion beams with energies up to 33.4 MeV per nucleon will be available for in vitro and in vivo experiments. This paper presents the conceptual design for LhARA and the R&D programme by which the LhARA consortium seeks to establish the facility. © Copyright © 2020 Aymar, Becker, Boogert, Borghesi, Bingham, Brenner, Burrows, Ettlinger, Dascalu, Gibson, Greenshaw, Gruber, Gujral, H
- Published
- 2020
112. High-Intensity Laser-Driven Oxygen Source from CW Laser-Heated Titanium Tape Targets
- Author
-
Kondo, K., (0000-0001-8143-0827) Nishiuchi, M., Sakaki, H., (0000-0003-0420-3940) Dover, N. P., (0000-0002-9085-1073) Lowe, H. F., Miyahara, T., Watanabe, Y., (0000-0002-3727-7017) Ziegler, T., (0000-0003-3926-409X) Zeil, K., (0000-0003-0390-7671) Schramm, U., Ditter, E. J., (0000-0002-7797-5979) Hicks, G. S., Ettlinger, O. C., (0000-0001-6323-4005) Najmudin, Z., Kiriyama, H., (0000-0002-9821-6779) Kando, M., Kondo, K., (0000-0001-8143-0827) Nishiuchi, M., Sakaki, H., (0000-0003-0420-3940) Dover, N. P., (0000-0002-9085-1073) Lowe, H. F., Miyahara, T., Watanabe, Y., (0000-0002-3727-7017) Ziegler, T., (0000-0003-3926-409X) Zeil, K., (0000-0003-0390-7671) Schramm, U., Ditter, E. J., (0000-0002-7797-5979) Hicks, G. S., Ettlinger, O. C., (0000-0001-6323-4005) Najmudin, Z., Kiriyama, H., and (0000-0002-9821-6779) Kando, M.
- Abstract
The interaction of high-intensity laser pulses with solid targets can be used as a highly charged, energetic heavy ion source. Normally, intrinsic contaminants on the target surface suppress the performance of heavy ion acceleration from a high-intensity laser–target interaction, resulting in preferential proton acceleration. Here, we demonstrate that CW laser heating of 5 µm titanium tape targets can remove contaminant hydrocarbons in order to expose a thin oxide layer on the metal surface, ideal for the generation of energetic oxygen beams. This is demonstrated by irradiating the heated targets with a PW class high-power laser at an intensity of 5 x 10^21 W/cm^2, showing enhanced acceleration of oxygen ions with a non-thermal-like distribution. Our new scheme using a CW laser-heated Ti tape target is promising for use as a moderate repetition energetic oxygen ion source for future applications.
- Published
- 2020
113. Automation and control of laser wakefield accelerators using Bayesian optimization
- Author
-
Shalloo, R. J., primary, Dann, S. J. D., additional, Gruse, J.-N., additional, Underwood, C. I. D., additional, Antoine, A. F., additional, Arran, C., additional, Backhouse, M., additional, Baird, C. D., additional, Balcazar, M. D., additional, Bourgeois, N., additional, Cardarelli, J. A., additional, Hatfield, P., additional, Kang, J., additional, Krushelnick, K., additional, Mangles, S. P. D., additional, Murphy, C. D., additional, Lu, N., additional, Osterhoff, J., additional, Põder, K., additional, Rajeev, P. P., additional, Ridgers, C. P., additional, Rozario, S., additional, Selwood, M. P., additional, Shahani, A. J., additional, Symes, D. R., additional, Thomas, A. G. R., additional, Thornton, C., additional, Najmudin, Z., additional, and Streeter, M. J. V., additional
- Published
- 2020
- Full Text
- View/download PDF
114. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions
- Author
-
Mangles, S. P. D., Murphy, C. D., Najmudin, Z., Thomas, A. G. R., Collier, J. L., Dangor, A. E., Divall, E. J., Foster, P. S., Gallacher, J. G., Hooker, C. J., Jaroszynski, D. A., Langley, A. J., Mori, W. B., Norreys, P. A., Tsung, F. S., Viskup, R., Walton, B. R., and Krushelnick, K.
- Subjects
Environmental issues ,Science and technology ,Zoology and wildlife conservation - Abstract
Author(s): S. P. D. Mangles (corresponding author) [1]; C. D. Murphy [1, 2]; Z. Najmudin [1]; A. G. R. Thomas [1]; J. L. Collier [2]; A. E. Dangor [1]; E. [...]
- Published
- 2004
- Full Text
- View/download PDF
115. Development of control mechanisms for a laser wakefield accelerator-driven bremsstrahlung x-ray source for advanced radiographic imaging
- Author
-
Underwood, C I D, primary, Baird, C D, additional, Murphy, C D, additional, Armstrong, C D, additional, Thornton, C, additional, Finlay, O J, additional, Streeter, M J V, additional, Selwood, M P, additional, Brierley, N, additional, Cipiccia, S, additional, Gruse, J-N, additional, McKenna, P, additional, Najmudin, Z, additional, Neely, D, additional, Rusby, D, additional, Symes, D R, additional, and Brenner, C M, additional
- Published
- 2020
- Full Text
- View/download PDF
116. New injection and acceleration scheme of positrons in the laser-plasma bubble regime
- Author
-
Xu, Z. Y., primary, Xiao, C. F., additional, Lu, H. Y., additional, Hu, R. H., additional, Yu, J. Q., additional, Gong, Z., additional, Shou, Y. R., additional, Liu, J. X., additional, Xie, C. Z., additional, Chen, S. Y., additional, Lu, H. G., additional, Xu, T. Q., additional, Li, R. X., additional, Hafz, N., additional, Li, S., additional, Najmudin, Z., additional, Rajeev, P. P., additional, Neely, D., additional, and Yan, X. Q., additional
- Published
- 2020
- Full Text
- View/download PDF
117. Dynamics of laser-driven heavy-ion acceleration clarified by ion charge states
- Author
-
Nishiuchi, M., primary, Dover, N. P., additional, Hata, M., additional, Sakaki, H., additional, Kondo, Ko., additional, Lowe, H. F., additional, Miyahara, T., additional, Kiriyama, H., additional, Koga, J. K., additional, Iwata, N., additional, Alkhimova, M. A., additional, Pirozhkov, A. S., additional, Faenov, A. Ya., additional, Pikuz, T. A., additional, Sagisaka, A., additional, Watanabe, Y., additional, Kando, M., additional, Kondo, K., additional, Ditter, E. J., additional, Ettlinger, O. C., additional, Hicks, G. S., additional, Najmudin, Z., additional, Ziegler, T., additional, Zeil, K., additional, Schramm, U., additional, and Sentoku, Y., additional
- Published
- 2020
- Full Text
- View/download PDF
118. Compton recoil effects in staging of laser wakefield accelerators
- Author
-
Streeter, M. J. V., primary and Najmudin, Z., additional
- Published
- 2020
- Full Text
- View/download PDF
119. Bright x-ray radiation from plasma bubbles in an evolving laser wakefield accelerator
- Author
-
Bloom, M. S., primary, Streeter, M. J. V., additional, Kneip, S., additional, Bendoyro, R. A., additional, Cheklov, O., additional, Cole, J. M., additional, Döpp, A., additional, Hooker, C. J., additional, Holloway, J., additional, Jiang, J., additional, Lopes, N. C., additional, Nakamura, H., additional, Norreys, P. A., additional, Rajeev, P. P., additional, Symes, D. R., additional, Schreiber, J., additional, Wood, J. C., additional, Wing, M., additional, Najmudin, Z., additional, and Mangles, S. P. D., additional
- Published
- 2020
- Full Text
- View/download PDF
120. Plasma Wakefield Accelerator Research 2019 - 2040: A community-driven UK roadmap compiled by the Plasma Wakefield Accelerator Steering Committee (PWASC)
- Author
-
Hidding, B, Hooker, S, Jamison, S, Muratori, B, Murphy, C, Najmudin, Z, Pattathil, R, Sarri, G, Streeter, M, Welsch, C, Wing, M, and Xia, G
- Subjects
Accelerator Physics (physics.acc-ph) ,Plasma Physics (physics.plasm-ph) ,FOS: Physical sciences ,Physics - Accelerator Physics ,Applied Physics (physics.app-ph) ,Physics - Applied Physics ,Physics - Plasma Physics ,Optics (physics.optics) ,Physics - Optics - Abstract
The acceleration gradients generated in a laser- or beam-driven plasma wakefield accelerator are typically three orders of magnitude greater than those produced by a conventional accelerator, and hence plasma accelerators can open a route to a new generation of very compact machines. In addition, plasma-based accelerators can generate beams with unique properties, such as tens of kiloamp peak currents, attosecond bunch duration, ultrahigh brightness and intrinsic particle beam-laser pulse synchronization. In this roadmap we review the status of plasma accelerator research in the UK. We outline potential applications, describe the research and development required to enable those applications, and discuss synergies with related areas of research. We also set-out the resources required to realise these ambitions and provide a timeline for advances in the key areas.
- Published
- 2019
121. Role of magnetic field evolution on filamentary structure formation in intense laser-foil interactions
- Author
-
King, M., Butler, N. M. H., Wilson, R., Capdessus, R., Gray, R. J., Powell, H. W., Dance, R. J., Padda, H., Gonzalez-Izquierdo, B., Rusby, D. R., Dover, N. P., Hicks, G. S., Ettlinger, O. C., Scullion, C., Carroll, D. C., Najmudin, Z., Borghesi, M., Neely, D., and McKenna, P.
- Subjects
Nuclear and High Energy Physics ,Nuclear Energy and Engineering ,instabilities ,Physics::Accelerator Physics ,laser-plasma ,ion acceleration ,Atomic and Molecular Physics, and Optics ,QC ,Electronic, Optical and Magnetic Materials - Abstract
Filamentary structures can form within the beam of protons accelerated during the interaction of an intense laser pulse with an ultrathin foil target. Such behaviour is shown to be dependent upon the formation time of quasi-static magnetic field structures throughout the target volume and the extent of the rear surface proton expansion over the same period. This is observed via both numerical and experimental investigations. By controlling the intensity profile of the laser drive, via the use of two temporally separated pulses, both the initial rear surface proton expansion and magnetic field formation time can be varied, resulting in modification to the degree of filamentary structure present within the laser-driven proton beam.
- Published
- 2019
122. A summary of the beatwave experiments at Ecole Polytechnique
- Author
-
Amiranoff, F., Bernard, D., Cros, B., Jacquet, F., Matthieussent, G., Marques, J.R., Mine, P., Mora, P., Modena, A., Morillo, J., Moulin, F., Najmudin, Z., Specka, A.E., and Stenz, C.
- Subjects
Plasma waves -- Analysis ,Plasma dynamics -- Analysis ,Laser-plasma interactions -- Analysis ,Business ,Chemistry ,Electronics ,Electronics and electrical industries - Abstract
We present a summary of the beatwave particle acceleration program developed at Ecole Polytechnique. In dedicated experiments, plasma formation, plasma wave generation and saturation, and particle acceleration were successively studied and understood in detail. A maximum energy gain of 1.3 MeV was obtained, which is compatible with an accelerating gradient of 0.7 GV/m.
- Published
- 1996
123. Experimental signatures of the quantum nature of radiation reaction in the field of an ultraintense laser
- Author
-
Poder, K., Tamburini, M., Sarri, G., Di Piazza, A., Kuschel, S., Baird, C. D., Behm, K., Bohlen, S., Cole, J. M., Corvan, D. J., Duff, M., Gerstmayr, E., Keitel, C. H., Krushelnick, K., Mangles, S. P.D., McKenna, P., Murphy, C. D., Najmudin, Z., Ridgers, C. P., Samarin, G. M., Symes, D. R., Thomas, A. G.R., Warwick, J., Zepf, M., Engineering & Physical Science Research Council (EPSRC), and Science and Technology Facilities Council (STFC)
- Subjects
Science & Technology ,Research group A. Di Piazza – Division C. H. Keitel ,Physics ,QC1-999 ,Physics, Multidisciplinary ,0204 Condensed Matter Physics ,FOS: Physical sciences ,Physics - Plasma Physics ,Plasma Physics (physics.plasm-ph) ,physics.plasm-ph ,Physical Sciences ,0201 Astronomical and Space Sciences ,SCATTERING ,ddc:530 ,0206 Quantum Physics ,QC - Abstract
The description of the dynamics of an electron in an external electromagnetic field of arbitrary intensity is one of the most fundamental outstanding problems in electrodynamics. Remarkably, to date there is no unanimously accepted theoretical solution for ultra-high intensities and little or no experimental data. The basic challenge is the inclusion of the self-interaction of the electron with the field emitted by the electron itself - the so-called radiation reaction force. We report here on the experimental evidence of strong radiation reaction, in an all-optical experiment, during the propagation of highly relativistic electrons (maximum energy exceeding 2 GeV) through the field of an ultra-intense laser (peak intensity of $4\times10^{20}$ W/cm$^2$). In their own rest frame, the highest energy electrons experience an electric field as high as one quarter of the critical field of quantum electrodynamics and are seen to lose up to 30% of their kinetic energy during the propagation through the laser field. The experimental data show signatures of quantum effects in the electron dynamics in the external laser field, potentially showing departures from the constant cross field approximation.
- Published
- 2018
124. Eupraxia, A Step Toward A Plasma-Wakefield Based Accelerator With High Beam Quality
- Author
-
Nghiem, P A P, primary, Alesini, D, additional, Aschikhin, A, additional, Assmann, R W, additional, Audet, T, additional, Beck, A, additional, Chance, A, additional, Chen, M, additional, Chiadroni, E, additional, Cianchi, A, additional, Clarke, J A, additional, Couprie, M E, additional, Croia, M, additional, Cros, B, additional, Dattoli, G, additional, Del Dotto, A, additional, Delerue, N, additional, Dorda, U, additional, Ferran Pousa, A, additional, Ferrario, M, additional, Fonseca, R A, additional, Ghaith, A, additional, Giribono, A, additional, Gizzi, L A, additional, Helm, A, additional, Hidding, B, additional, Hooker, S M, additional, Ibison, M G, additional, Jaroszynski, D A, additional, Kruchinin, K O, additional, Labate, L, additional, Lee, P, additional, Li, X, additional, Li, F Y, additional, Libov, V, additional, Marchetti, B, additional, Martinez de la Ossa, A, additional, Marx, D, additional, Massimo, F, additional, Mathieu, F, additional, Maynard, G, additional, Mazzotta, Z, additional, Mehrling, T J, additional, Molodozhentsev, A Y, additional, Mosnier, A, additional, Mostacci, A, additional, Najmudin, Z, additional, Nguyen, F, additional, Niknejadi, P, additional, Oumbarek Espinos, D, additional, Pattathil, R, additional, Pompili, R, additional, Romeo, S, additional, Rossi, A R, additional, Schaper, L, additional, Sheng, Z M, additional, Shpakov, V, additional, Silva, L O, additional, Silva, T, additional, Simon, C, additional, Specka, A, additional, Stella, A, additional, Streeter, M J V, additional, Svystun, E N, additional, Symes, D, additional, Terzani, D, additional, Toci, G, additional, Tomassini, P, additional, Vaccarezza, C, additional, Vieira, J M, additional, Vujanovic, M, additional, Walczak, R, additional, Walker, P A, additional, Weikum, M K, additional, Welsch, C P, additional, Weng, S M, additional, Wiggins, S M, additional, Wolfenden, J, additional, Yoffe, S, additional, and Zhu, J, additional
- Published
- 2019
- Full Text
- View/download PDF
125. Simulation of a radiobiology facility for the Centre for the Clinical Application of Particles
- Author
-
Kurup, A., primary, Pasternak, J., additional, Taylor, R., additional, Murgatroyd, L., additional, Ettlinger, O., additional, Shields, W., additional, Nevay, L., additional, Gruber, S., additional, Pozimski, J., additional, Lau, H.T., additional, Long, K., additional, Blackmore, V., additional, Barber, G., additional, Najmudin, Z., additional, and Yarnold, J., additional
- Published
- 2019
- Full Text
- View/download PDF
126. Laser wakefield acceleration with active feedback at 5 Hz
- Author
-
Dann, S. J. D., primary, Baird, C. D., additional, Bourgeois, N., additional, Chekhlov, O., additional, Eardley, S., additional, Gregory, C. D., additional, Gruse, J.-N., additional, Hah, J., additional, Hazra, D., additional, Hawkes, S. J., additional, Hooker, C. J., additional, Krushelnick, K., additional, Mangles, S. P. D., additional, Marshall, V. A., additional, Murphy, C. D., additional, Najmudin, Z., additional, Nees, J. A., additional, Osterhoff, J., additional, Parry, B., additional, Pourmoussavi, P., additional, Rahul, S. V., additional, Rajeev, P. P., additional, Rozario, S., additional, Scott, J. D. E., additional, Smith, R. A., additional, Springate, E., additional, Tang, Y., additional, Tata, S., additional, Thomas, A. G. R., additional, Thornton, C., additional, Symes, D. R., additional, and Streeter, M. J. V., additional
- Published
- 2019
- Full Text
- View/download PDF
127. Absolute calibration of microchannel plate detector for carbon ions up to 250 MeV
- Author
-
McIlvenny, A., primary, Doria, D., additional, Romagnani, L., additional, Ahmed, H., additional, Martin, P., additional, WIlliamson, S.D.R., additional, Ditter, E.J., additional, Ettlinger, O., additional, Hicks, G.S., additional, McKenna, P., additional, Najmudin, Z., additional, Neely, D., additional, Kar, S., additional, and Borghesi, M., additional
- Published
- 2019
- Full Text
- View/download PDF
128. Role of magnetic field evolution on filamentary structure formation in intense laser–foil interactions
- Author
-
King, M., primary, Butler, N. M. H., additional, Wilson, R., additional, Capdessus, R., additional, Gray, R. J., additional, Powell, H. W., additional, Dance, R. J., additional, Padda, H., additional, Gonzalez-Izquierdo, B., additional, Rusby, D. R., additional, Dover, N. P., additional, Hicks, G. S., additional, Ettlinger, O. C., additional, Scullion, C., additional, Carroll, D. C., additional, Najmudin, Z., additional, Borghesi, M., additional, Neely, D., additional, and McKenna, P., additional
- Published
- 2019
- Full Text
- View/download PDF
129. EuPRAXIA – a compact, cost-efficient particle and radiation source
- Author
-
Weikum, M. K., primary, Akhter, T., additional, Alesini, P. D., additional, Alexandrova, A. S., additional, Anania, M. P., additional, Andreev, N. E., additional, Andriyash, I., additional, Aschikhin, A., additional, Assmann, R. W., additional, Audet, T., additional, Bacci, A., additional, Barna, I. F., additional, Beaton, A., additional, Beck, A., additional, Beluze, A., additional, Bernhard, A., additional, Bielawski, S., additional, Bisesto, F. G., additional, Brandi, F., additional, Bringer, O., additional, Brinkmann, R., additional, Bründermann, E., additional, Büscher, M., additional, Bussmann, M., additional, Bussolino, G. C., additional, Chance, A., additional, Chanteloup, J. C., additional, Chen, M., additional, Chiadroni, E., additional, Cianchi, A., additional, Clarke, J., additional, Cole, J., additional, Couprie, M. E., additional, Croia, M., additional, Cros, B., additional, Crump, P., additional, Dattoli, G., additional, Delerue, N., additional, Delferriere, O., additional, Delinikolas, P., additional, De Nicola, S., additional, Dias, J., additional, Dorda, U., additional, Fedele, R., additional, Pousa, A. Ferran, additional, Ferrario, M., additional, Filippi, F., additional, Fils, J., additional, Fiore, G., additional, Fonseca, R. A., additional, Galimberti, M., additional, Gallo, A., additional, Garzella, D., additional, Gastinel, P., additional, Giove, D., additional, Giribono, A., additional, Gizzi, L. A., additional, Grüner, F. J., additional, Habib, A. F., additional, Heinemann, T., additional, Hidding, B., additional, Holzer, B. J., additional, Hooker, S. M., additional, Hosokai, T., additional, Hübner, M., additional, Irman, A., additional, Jafarinia, F., additional, Jaroszynski, D. A., additional, Jaster-Merz, S., additional, Joshi, C., additional, Kaluza, M. C., additional, Kando, M., additional, Karger, O. S., additional, Karsch, S., additional, Khazanov, E., additional, Khikhlukha, D., additional, Knetsch, A., additional, Kocon, D., additional, Koester, P., additional, Kononenko, O., additional, Korn, G., additional, Kostyukov, I., additional, Kruchinin, K., additional, Labate, L., additional, Lechner, C., additional, Leemans, W. P., additional, Lehrach, A., additional, Li, F. Y., additional, Li, X., additional, Libov, V., additional, Lifschitz, A., additional, Litvinenko, V., additional, Lu, W., additional, Lundh, O., additional, Maier, A. R., additional, Malka, V., additional, Manahan, G. G., additional, Mangles, S. P. D., additional, Marchetti, B., additional, Marocchino, A., additional, de la Ossa, A. Martinez, additional, Martins, J. L., additional, Mason, P., additional, Massimo, F., additional, Mathieu, F., additional, Maynard, G., additional, Mazzotta, Z., additional, Mehrling, T. J., additional, Molodozhentsev, A. Y., additional, Mostacci, A., additional, Müller, A. S., additional, Murphy, C. D., additional, Najmudin, Z., additional, Nghiem, P. A. P., additional, Nguyen, F., additional, Niknejadi, P., additional, Osterhoff, J., additional, Papadopoulos, D., additional, Patrizi, B., additional, Petrillo, V., additional, Pocsai, M. A., additional, Poder, K., additional, Pompili, R., additional, Pribyl, L., additional, Pugacheva, D., additional, Romeo, S., additional, Rajeev, P. P., additional, Conti, M. Rossetti, additional, Rossi, A. R., additional, Rossmanith, R., additional, Roussel, E., additional, Sahai, A. A., additional, Sarri, G., additional, Schaper, L., additional, Scherkl, P., additional, Schramm, U., additional, Schroeder, C. B., additional, Schwindling, J., additional, Scifo, J., additional, Serafini, L., additional, Sheng, Z. M., additional, Silva, L. O., additional, Silva, T., additional, Simon, C., additional, Sinha, U., additional, Specka, A., additional, Streeter, M. J. V., additional, Svystun, E. N., additional, Symes, D., additional, Szwaj, C., additional, Tauscher, G., additional, Terzani, D., additional, Thompson, N., additional, Toci, G., additional, Tomassini, P., additional, Torres, R., additional, Ullmann, D., additional, Vaccarezza, C., additional, Vannini, M., additional, Vieira, J. M., additional, Villa, F., additional, Wahlström, C. -G., additional, Walczak, R., additional, Walker, P. A., additional, Wang, K., additional, Welsch, C. P., additional, Wolfenden, J., additional, Xia, G., additional, Yabashi, M., additional, Yu, L., additional, Zhu, J., additional, and Zigler, A., additional
- Published
- 2019
- Full Text
- View/download PDF
130. Electron acceleration from the breaking of relativistic plasma waves
- Author
-
Modena, A., Najmudin, Z., Dangor, A. E., Clayton, C. E., Marsh, K. A., Joshi, C., Malka, V., Darrow, C. B., Danson, C., Neely, D., and Walsh, F. N.
- Published
- 1995
131. A spectrometer for ultrashort gamma-ray pulses with photon energies greater than 10 MeV
- Author
-
Behm, K.T., Cole, J.M., Joglekar, A.S., Gerstmayr, E., Wood, J.C., Baird, C.D., Blackburn, T.G., Duff, M., Harvey, C., Ilderton, A., Kuschel, S., Mangles, S.P.D., Marklund, M., McKenna, P., Murphy, C.D., Najmudin, Z., Poder, K., Ridgers, C.P., Sarri, G., Samarin, G.M., Symes, D., Warwick, J., Zepf, M., Krushelnick, K., Thomas, A.G.R., Behm, K.T., Cole, J.M., Joglekar, A.S., Gerstmayr, E., Wood, J.C., Baird, C.D., Blackburn, T.G., Duff, M., Harvey, C., Ilderton, A., Kuschel, S., Mangles, S.P.D., Marklund, M., McKenna, P., Murphy, C.D., Najmudin, Z., Poder, K., Ridgers, C.P., Sarri, G., Samarin, G.M., Symes, D., Warwick, J., Zepf, M., Krushelnick, K., and Thomas, A.G.R.
- Abstract
We present a design for a pixelated scintillator based gamma-ray spectrometer for non-linear inverse Compton scattering experiments. By colliding a laser wakefield accelerated electron beam with a tightly focused, intense laser pulse, gamma-ray photons up to 100 MeV energies and with few femtosecond duration may be produced. To measure the energy spectrum and angular distribution, a 33 × 47 array of cesium-iodide crystals was oriented such that the 47 crystal length axis was parallel to the gamma-ray beam and the 33 crystal length axis was oriented in the vertical direction. Using an iterative deconvolution method similar to the YOGI code, modeling of the scintillator response using GEANT4 and fitting to a quantum Monte Carlo calculated photon spectrum, we are able to extract the gamma ray spectra generated by the inverse Compton interaction. © 2018 Author(s).
- Published
- 2018
132. Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam
- Author
-
Cole, J. M., Behm, K. T., Gerstmayr, E., Blackburn, T. G., Wood, J. C., Baird, C. D., Duff, M. J., Harvey, C., Ilderton, A., Joglekar, A. S., Krushelnick, K., Kuschel, S., Marklund, M., McKenna, P., Murphy, C. D., Poder, K., Ridgers, C. P., Samarin, G. M., Sarri, G., Symes, D. R., Thomas, A. G. R., Warwick, J., Zepf, M., Najmudin, Z., Mangles, S. P. D., Cole, J. M., Behm, K. T., Gerstmayr, E., Blackburn, T. G., Wood, J. C., Baird, C. D., Duff, M. J., Harvey, C., Ilderton, A., Joglekar, A. S., Krushelnick, K., Kuschel, S., Marklund, M., McKenna, P., Murphy, C. D., Poder, K., Ridgers, C. P., Samarin, G. M., Sarri, G., Symes, D. R., Thomas, A. G. R., Warwick, J., Zepf, M., Najmudin, Z., and Mangles, S. P. D.
- Abstract
The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today's lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (epsilon > 500 MeV) with an intense laser pulse (a(0) > 10). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (gamma rays), consistent with a quantum description of radiation reaction. The generated gamma rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy epsilon(crit) > 30 MeV.
- Published
- 2018
133. Observation of laser power amplification in a self-injecting laser wakefield accelerator
- Author
-
Streeter, M. J. V., Kneip, S., Bloom, M. S., Bendoyro, R. A., Chekhlov, O., Dangor, A. E., Döpp, A., Hooker, C. J., Holloway, J., Jiang, J., Lopes, N. C., Nakamura, H., Norreys, P. A., Palmer, C. A. J., Rajeev, P. P., Schreiber, J., Symes, D. R., Wing, M., Mangles, S. P. D., Najmudin, Z., Streeter, M. J. V., Kneip, S., Bloom, M. S., Bendoyro, R. A., Chekhlov, O., Dangor, A. E., Döpp, A., Hooker, C. J., Holloway, J., Jiang, J., Lopes, N. C., Nakamura, H., Norreys, P. A., Palmer, C. A. J., Rajeev, P. P., Schreiber, J., Symes, D. R., Wing, M., Mangles, S. P. D., and Najmudin, Z.
- Abstract
We report on the depletion and power amplification of the driving laser pulse in a strongly-driven laser wakefield accelerator. Simultaneous measurement of the transmitted pulse energy and temporal shape indicate an increase in peak power from $187 \pm 11$TW to a maximum of $318 \pm 12$ TW after 13 mm of propagation in plasma density of $0.9 \times 10^{18}$ cm$^{-3}$. The power amplification is correlated with the injection and acceleration of electrons in the non-linear wakefield. This process is modeled by including localized redshifting and subsequent group delay dispersion at the laser pulse front.
- Published
- 2018
134. General features of experiments on the dynamics of laser-driven electron–positron beams
- Author
-
Warwick, J.R., Alejo, A., Dzelzainis, T., Schumaker, W., Doria, D., Romagnani, L., Poder, K., Cole, J.M., Yeung, M., Krushelnick, K., Mangles, S.P.D., Najmudin, Z., Samarin, G.M., Symes, D., Thomas, A.G.R., Borghesi, M., Sarri, G., Warwick, J.R., Alejo, A., Dzelzainis, T., Schumaker, W., Doria, D., Romagnani, L., Poder, K., Cole, J.M., Yeung, M., Krushelnick, K., Mangles, S.P.D., Najmudin, Z., Samarin, G.M., Symes, D., Thomas, A.G.R., Borghesi, M., and Sarri, G.
- Abstract
The experimental study of the dynamics of neutral electron–positron beams is an emerging area of research, enabled by the recent results on the generation of this exotic state of matter in the laboratory. Electron–positron beams and plasmas are believed to play a major role in the dynamics of extreme astrophysical objects such as supermassive black holes and pulsars. For instance, they are believed to be the main constituents of a large number of astrophysical jets, and they have been proposed to significantly contribute to the emission of gamma-ray bursts and their afterglow. However, despite extensive numerical modelling and indirect astrophysical observations, a detailed experimental characterisation of the dynamics of these objects is still at its infancy. Here, we will report on some of the general features of experiments studying the dynamics of electron–positron beams in a fully laser-driven setup.
- Published
- 2018
135. Laser Driving Highly Collimated $��$-ray Pulses for the Generation of $��^-��^+$ and $e^-e^+$ Pairs in $��-��$ Collider
- Author
-
Yu, J. Q., Hu, R. H., Gong, Z., Ting, A., Najmudin, Z., Wu, D., Lu, H. Y., Ma, W. J., and Yan, X. Q.
- Subjects
Plasma Physics (physics.plasm-ph) ,Accelerator Physics (physics.acc-ph) ,Physics::Instrumentation and Detectors ,Physics::Accelerator Physics ,FOS: Physical sciences ,Applied Physics (physics.app-ph) ,Computational Physics (physics.comp-ph) - Abstract
A scheme to generate highly collimated $��$-ray pulse is proposed for the production of muon and electron pairs in $��-��$ collider. The $��$-ray pulse, with high conversion efficiency, can be produced as the result of electron phase-locked acceleration in longitudinal electric field through the interaction between an ultra-intense laser pulse and a narrow tube target. Numerical simulation shows that 18\% energy of a 10-PW laser pulse is transferred into the forward $��$-rays in a divergence angle less than $ 3^\circ$. The $��$-ray pulse is applied in $��-��$ collider, in which muon pairs can be produced and electron pairs can be enhanced by more than 3 orders of magnitude. This scheme, which could be realized with the coming 10PW class laser pulses, would allow the observation of a $��-��$ collider for electron and muon pairs in laboratory.
- Published
- 2017
- Full Text
- View/download PDF
136. Horizon 2020 EuPRAXIA design study
- Author
-
EuPRAXIA Collaboration, Walker, P. A., Alesini, P. D., Alexandrova, A. S., Anania, M. P., Andreev, N. E., Andriyash, I., Aschikhin, A., Assmann, R. W., Audet, T., Bacci, A., Barna, I. F., Beaton, A., Beck, A., Beluze, A., Bernhard, A., Bielawski, S., Bisesto, F. G., Boedewadt, J., Brandi, F., Bringer, O., Brinkmann, R., Bründermann, E., Büscher, M., Bussmann, M., Bussolino, G. C., Chance, A., Chanteloup, J. C., Chen, M., Chiadroni, E., Cianchi, A., Clarke, J., Cole, J., Couprie, M. E., Croia, M., Cros, B., Dale, J., Dattoli, G., Delerue, N., Delferriere, O., Delinikolas, P., Dias, J., Dorda, U., Ertel, K., Ferran Pousa, A., Ferrario, M., Filippi, F., Fils, J., Fiorito, R., Fonseca, R. A., Galimberti, M., Gallo, A., Garzella, D., Gastinel, P., Giove, D., Giribono, A., Gizzi, L. A., Grüner, F. J., Habib, A. F., Haefner, L. C., Heinemann, T., Hidding, B., Holzer, B. J., Hooker, S. M., Hosokai, T., Irman, A., Jaroszynski, D. A., Jaster-Merz, S., Joshi, C., Kaluza, M. C., Kando, M., Karger, O. S., Karsch, S., Khazanov, E., Khikhlukha, D., Knetsch, A., Kocon, D., Koester, P., Kononenko, O., Korn, G., Kostyukov, I., Labate, L., Lechner, C., Leemans, W. P., Lehrach, A., Li, F. Y., Li, X., Libov, V., Lifschitz, A., Litvinenko, V., Lu, W., Maier, A. R., Malka, V., Manahan, G. G., Mangles, S. P. D., Marchetti, B., Marocchino, A., Martinez de la Ossa, A., Martins, J. L., Massimo, F., Mathieu, F., Maynard, G., Mehrling, T. J., Molodozhentsev, A. Y., Mosnier, A., Mostacci, A., Mueller, A. S., Najmudin, Z., Nghiem, P. A. P., Nguyen, F., Niknejadi, P., Osterhoff, J., Papadopoulos, D., Patrizi, B., Pattathil, R., Petrillo, V., Pocsai, M. A., Poder, K., Pompili, R., Pribyl, L., Pugacheva, D., Romeo, S., Rossi, A. R., Roussel, E., Sahai, A. A., Scherkl, P., Schramm, U., Schroeder, C. B., Schwindling, J., Scifo, J., Serafini, L., Sheng, Z. M., Silva, L. O., Silva, T., Simon, C., Sinha, U., Specka, A., Streeter, M. J. V., Svystun, E. N., Symes, D., Szwaj, C., Tauscher, G., Thomas, A. G. R., Thompson, N., Toci, G., Tomassini, P., Vaccarezza, C., Vannini, M., Vieira, J. M., Villa, F., Wahlström, C-G., Walczak, R., Weikum, M. K., Welsch, C. P., Wiemann, C., Wolfenden, J., Xia, G., Yabashi, M., Yu, L., Zhu, J., Zigler, A., Nguyen, F., and Dattoli, G.
- Subjects
History ,Technology ,high-energy physics (HEP) ,compact X-ray sources ,01 natural sciences ,7. Clean energy ,Education ,accelerator facility ,Acceleration ,Physics and Astronomy (all) ,multi-GeV electron beams ,0103 physical sciences ,ddc:530 ,010306 general physics ,QC ,plasma ,compact accelerators ,Physics ,QC717 ,Plasma acceleration ,Settore FIS/01 ,Horizon (archaeology) ,010308 nuclear & particles physics ,light sources ,Settore FIS/07 ,Mechanics ,Computer Science Applications ,Design study ,Plasma Research Accelerator ,plasma accelerator ,Physics::Accelerator Physics ,ddc:600 - Abstract
The Horizon 2020 Project EuPRAXIA ("European Plasma Research Accelerator with eXcellence In Applications") is preparing a conceptual design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020. © Published under licence by IOP Publishing Ltd.
- Published
- 2017
137. Case Studies on Plasma Wakefield Accelerator Design
- Author
-
Osterhoff, Jens, Najmudin, Z., and Faure, J.
- Subjects
Accelerator Physics (physics.acc-ph) ,FOS: Physical sciences ,Physics - Accelerator Physics ,Accelerators and Storage Rings ,Plasma wakefield accelerators ,applications ,case study - Abstract
CAS-CERN Accelerator School: Plasma Wake Acceleration CAS-CERN Accelerator School: Plasma Wake Acceleration, Geneva, Switzerland, 23 Nov 2014 - 29 Nov 2014 ; CERN Accelerator School Yellow Report CERN-2016-001, 301-308(2016). doi:http://dx.doi.org/10.5170/CERN-2016-001.301, The field of plasma-based particle accelerators has seen tremendous progressover the past decade and experienced significant growth in the number ofactivities. During this process, the involved scientific community hasexpanded from traditional university-based research and is now encompassingmany large research laboratories worldwide, such as BNL, CERN, DESY,KEK, LBNL and SLAC. As a consequence, there is a strong demand for aconsolidated effort in education at the intersection of accelerator, laser andplasma physics. The CERN Accelerator School on Plasma Wake Accelerationhas been organized as a result of this development. In this paper, we describethe interactive component of this one-week school, which consisted of threecase studies to be solved in 11 working groups by the participants of theCERN Accelerator School, Published by CERN, Geneva, Geneva
- Published
- 2017
- Full Text
- View/download PDF
138. Horizon 2020 EuPRAXIA design study
- Author
-
Walker, P. A., Alesini, P. D., Alexandrova, A. S., Anania, M. P., Andreev, N. E., Andriyash, I., Aschikhin, A., Assmann, R. W., Audet, T., Bacci, A., Barna, I. F., Beaton, A., Beck, A., Beluze, A., Bernhard, A., Bielawski, S., Bisesto, F. G., Boedewadt, J., Brandi, F., Bringer, O., Brinkmann, R., Bründermann, E., Büscher, M., Bussmann, M., Bussolino, G. C., Chance, A., Chanteloup, J. C., Chen, M., Chiadroni, E., Cianchi, A., Clarke, J., Cole, J., Couprie, M. E., Croia, M., Cros, B., Dale, J., Dattoli, G., Delerue, N., Delferriere, O., Delinikolas, P., Dias, J., Dorda, U., Ertel, K., Pousa, A. F., Ferrario, M., Filippi, F., Fils, J., Fiorito, R., Fonseca, R. A., Galimberti, M., Gallo, A., Garzella, D., Gastinel, P., Giove, D., Giribono, A., Gizzi, L. A., Grüner, F. J., Habib, A. F., Haefner, L. C., Heinemann, T., Hidding, B., Holzer, B. J., Hooker, S. M., Hosokai, T., Irman, A., Jaroszynski, D. A., Jaster-Merz, S., Joshi, C., Kaluza, M. C., Kando, M., Karger, O. S., Karsch, S., Khazanov, E., Khikhlukha, D., Knetsch, A., Kocon, D., Koester, P., Kononenko, O., Korn, G., Kostyukov, I., Labate, L., Lechner, C., Leemans, W. P., Lehrach, A., Li, F. Y., Li, X., Libov, V., Lifschitz, A., Litvinenko, V., Lu, W., Maier, A. R., Malka, V., Manahan, G. G., Mangles, S. P. D., Marchetti, B., Marocchino, A., Ossa, A. M. D. L., Martins, J. L., Massimo, F., Mathieu, F., Maynard, G., Mehrling, T. J., Molodozhentsev, A. Y., Mosnier, A., Mostacci, A., Mueller, A. S., Najmudin, Z., Nghiem, P. A. P., Nguyen, F., Niknejadi, P., Osterhoff, J., Papadopoulos, D., Patrizi, B., Pattathil, R., Petrillo, V., Pocsai, M. A., Poder, K., Pompili, R., Pribyl, L., Pugacheva, D., Romeo, S., Rossi, A. R., Roussel, E., Sahai, A. A., Scherkl, P., Schramm, U., Schroeder, C. B., Schwindling, J., Scifo, J., Serafini, L., Sheng, Z. M., Silva, L. O., Silva, T., Simon, C., Sinha, U., Specka, A., Streeter, M. J. V., Svystun, E. N., Symes, D., Szwaj, C., Tauscher, G., Thomas, A. G. R., Thompson, N., Toci, G., Tomassini, P., Vaccarezza, C., Vannini, M., Vieira, J. M., Villa, F., Wahlström, C.-G., Walczak, R., Weikum, M. K., Welsch, C. P., Wiemann, C., Wolfenden, J., Xia, G., Yabashi, M., Yu, L., and Zigler, J. Z. A.
- Subjects
Plasma accelerator ,Physics::Accelerator Physics - Abstract
The Horizon 2020 Project EuPRAXIA ("European Plasma Research Accelerator with eXcellence In Applications") is preparing a conceptual design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020.
- Published
- 2017
139. A spectrometer for ultrashort gamma-ray pulses with photon energies greater than 10 MeV
- Author
-
Behm, K. T., primary, Cole, J. M., additional, Joglekar, A. S., additional, Gerstmayr, E., additional, Wood, J. C., additional, Baird, C. D., additional, Blackburn, T. G., additional, Duff, M., additional, Harvey, C., additional, Ilderton, A., additional, Kuschel, S., additional, Mangles, S. P. D., additional, Marklund, M., additional, McKenna, P., additional, Murphy, C. D., additional, Najmudin, Z., additional, Poder, K., additional, Ridgers, C. P., additional, Sarri, G., additional, Samarin, G. M., additional, Symes, D., additional, Warwick, J., additional, Zepf, M., additional, Krushelnick, K., additional, and Thomas, A. G. R., additional
- Published
- 2018
- Full Text
- View/download PDF
140. General features of experiments on the dynamics of laser-driven electron–positron beams
- Author
-
Warwick, J.R., primary, Alejo, A., additional, Dzelzainis, T., additional, Schumaker, W., additional, Doria, D., additional, Romagnani, L., additional, Poder, K., additional, Cole, J.M., additional, Yeung, M., additional, Krushelnick, K., additional, Mangles, S.P.D., additional, Najmudin, Z., additional, Samarin, G.M., additional, Symes, D., additional, Thomas, A.G.R., additional, Borghesi, M., additional, and Sarri, G., additional
- Published
- 2018
- Full Text
- View/download PDF
141. Observation of anomalous side-scattering in laser wakefield accelerators
- Author
-
Krushelnick, K., primary, Dangor, A. E., additional, Kaluza, M., additional, Mangles, S. P. D., additional, Murphy, C. D., additional, Najmudin, Z., additional, and Thomas, A. G. R., additional
- Published
- 2018
- Full Text
- View/download PDF
142. Ultrafast Imaging of Laser Driven Shock Waves using Betatron X-rays from a Laser Wakefield Accelerator
- Author
-
Wood, J. C., primary, Chapman, D. J., additional, Poder, K., additional, Lopes, N. C., additional, Rutherford, M. E., additional, White, T. G., additional, Albert, F., additional, Behm, K. T., additional, Booth, N., additional, Bryant, J. S. J., additional, Foster, P. S., additional, Glenzer, S., additional, Hill, E., additional, Krushelnick, K., additional, Najmudin, Z., additional, Pollock, B. B., additional, Rose, S., additional, Schumaker, W., additional, Scott, R. H. H., additional, Sherlock, M., additional, Thomas, A. G. R., additional, Zhao, Z., additional, Eakins, D. E., additional, and Mangles, S. P. D., additional
- Published
- 2018
- Full Text
- View/download PDF
143. Making pions with laser light
- Author
-
Schumaker, W, primary, Liang, T, additional, Clarke, R, additional, Cole, J M, additional, Grittani, G, additional, Kuschel, S, additional, Mangles, S P D, additional, Najmudin, Z, additional, Poder, K, additional, Sarri, G, additional, Symes, D, additional, Thomas, A G R, additional, Vargas, M, additional, Zepf, M, additional, and Krushelnick, K, additional
- Published
- 2018
- Full Text
- View/download PDF
144. Observation of Laser Power Amplification in a Self-Injecting Laser Wakefield Accelerator
- Author
-
Streeter, M. J. V., primary, Kneip, S., additional, Bloom, M. S., additional, Bendoyro, R. A., additional, Chekhlov, O., additional, Dangor, A. E., additional, Döpp, A., additional, Hooker, C. J., additional, Holloway, J., additional, Jiang, J., additional, Lopes, N. C., additional, Nakamura, H., additional, Norreys, P. A., additional, Palmer, C. A. J., additional, Rajeev, P. P., additional, Schreiber, J., additional, Symes, D. R., additional, Wing, M., additional, Mangles, S. P. D., additional, and Najmudin, Z., additional
- Published
- 2018
- Full Text
- View/download PDF
145. Temporal feedback control of high-intensity laser pulses to optimize ultrafast heating of atomic clusters
- Author
-
Streeter, M. J. V., primary, Dann, S. J. D., additional, Scott, J. D. E., additional, Baird, C. D., additional, Murphy, C. D., additional, Eardley, S., additional, Smith, R. A., additional, Rozario, S., additional, Gruse, J.-N., additional, Mangles, S. P. D., additional, Najmudin, Z., additional, Tata, S., additional, Krishnamurthy, M., additional, Rahul, S. V., additional, Hazra, D., additional, Pourmoussavi, P., additional, Osterhoff, J., additional, Hah, J., additional, Bourgeois, N., additional, Thornton, C., additional, Gregory, C. D., additional, Hooker, C. J., additional, Chekhlov, O., additional, Hawkes, S. J., additional, Parry, B., additional, Marshall, V. A., additional, Tang, Y., additional, Springate, E., additional, Rajeev, P. P., additional, Thomas, A. G. R., additional, and Symes, D. R., additional
- Published
- 2018
- Full Text
- View/download PDF
146. The generation of collimated γ-ray pulse from the interaction between 10 PW laser and a narrow tube target
- Author
-
Yu, J. Q., primary, Hu, R. H., additional, Gong, Z., additional, Ting, A., additional, Najmudin, Z., additional, Wu, D., additional, Lu, H. Y., additional, Ma, W. J., additional, and Yan, X. Q., additional
- Published
- 2018
- Full Text
- View/download PDF
147. On the properties of synchrotron-like X-ray emission from laser wakefield accelerated electron beams
- Author
-
McGuffey, C., primary, Schumaker, W., additional, Matsuoka, T., additional, Chvykov, V., additional, Dollar, F., additional, Kalintchenko, G., additional, Kneip, S., additional, Najmudin, Z., additional, Mangles, S. P. D., additional, Vargas, M., additional, Yanovsky, V., additional, Maksimchuk, A., additional, Thomas, A. G. R., additional, and Krushelnick, K., additional
- Published
- 2018
- Full Text
- View/download PDF
148. Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam
- Author
-
Cole, J. M., primary, Behm, K. T., additional, Gerstmayr, E., additional, Blackburn, T. G., additional, Wood, J. C., additional, Baird, C. D., additional, Duff, M. J., additional, Harvey, C., additional, Ilderton, A., additional, Joglekar, A. S., additional, Krushelnick, K., additional, Kuschel, S., additional, Marklund, M., additional, McKenna, P., additional, Murphy, C. D., additional, Poder, K., additional, Ridgers, C. P., additional, Samarin, G. M., additional, Sarri, G., additional, Symes, D. R., additional, Thomas, A. G. R., additional, Warwick, J., additional, Zepf, M., additional, Najmudin, Z., additional, and Mangles, S. P. D., additional
- Published
- 2018
- Full Text
- View/download PDF
149. Horizon 2020 EuPRAXIA design study
- Author
-
Walker, P A, Alesini, P D, Alexandrova, A S, Anania, M P, Andreev, N E, Andriyash, I., Aschikhin, A., Assmann, R W, Audet, T., Bacci, A., Barna, I F, Beaton, A., Beck, A., Beluze, A., Bernhard, A., Bielawski, S., Bisesto, F G, Boedewadt, J., Brandi, F., Bringer, O., Brinkmann, R., Bründermann, E., Büscher, M., Bussmann, M., Bussolino, G C, Chance, A., Chanteloup, J C, Chen, M., Chiadroni, E., Cianchi, A., Clarke, J., Cole, J., Couprie, M E, Croia, M., Cros, B., Dale, J., Dattoli, G., Delerue, N., Delferriere, O., Delinikolas, P., Dias, J., Dorda, U., Ertel, K., Ferran Pousa, A., Ferrario, M., Filippi, F., Fils, J., Fiorito, R., Fonseca, R A, Galimberti, M., Gallo, A., Garzella, D., Gastinel, P., Giove, D., Giribono, A., Gizzi, L A, Grüner, F J, Habib, A F, Haefner, L C, Heinemann, T., Hidding, B., Holzer, B J, Hooker, S M, Hosokai, T., Irman, A., Jaroszynski, D A, Jaster-Merz, S., Joshi, C., Kaluza, M C, Kando, M., Karger, O S, Karsch, S., Khazanov, E., Khikhlukha, D., Knetsch, A., Kocon, D., Koester, P., Kononenko, O., Korn, G., Kostyukov, I., Labate, L., Lechner, C., Leemans, W P, Lehrach, A., Li, F Y, Li, X., Libov, V., Lifschitz, A., Litvinenko, V., Lu, W., Maier, A R, Malka, V., Manahan, G G, Mangles, S P D, Marchetti, B., Marocchino, A., Martinez de la Ossa, A, Martins, J L, Massimo, F., Mathieu, F., Maynard, G., Mehrling, T J, Molodozhentsev, A Y, Mosnier, A., Mostacci, A., Mueller, A S, Najmudin, Z., Nghiem, P A P, Nguyen, F., Niknejadi, P., Osterhoff, J., Papadopoulos, D., Patrizi, B., Pattathil, R., Petrillo, V., Pocsai, M A, Poder, K., Pompili, R., Pribyl, L., Pugacheva, D., Romeo, S., Rossi, A R, Roussel, E., Sahai, A A, Scherkl, P., Schramm, U., Schroeder, C B, Schwindling, J., Scifo, J., Serafini, L., Sheng, Z M, Silva, L O, Silva, T., Simon, C., Sinha, U., Specka, A., Streeter, M J V, Svystun, E N, Symes, D., Szwaj, C., Tauscher, G., Thomas, A G R, Thompson, N., Toci, G., Tomassini, P., Vaccarezza, C., Vannini, M., Vieira, J M, Villa, F., Wahlström, C.-G., Walczak, R., Weikum, M K, Welsch, C P, Wiemann, C., Wolfenden, J., Xia, G., Yabashi, M., Yu, L., Zhu, J., Zigler, A., Walker, P A, Alesini, P D, Alexandrova, A S, Anania, M P, Andreev, N E, Andriyash, I., Aschikhin, A., Assmann, R W, Audet, T., Bacci, A., Barna, I F, Beaton, A., Beck, A., Beluze, A., Bernhard, A., Bielawski, S., Bisesto, F G, Boedewadt, J., Brandi, F., Bringer, O., Brinkmann, R., Bründermann, E., Büscher, M., Bussmann, M., Bussolino, G C, Chance, A., Chanteloup, J C, Chen, M., Chiadroni, E., Cianchi, A., Clarke, J., Cole, J., Couprie, M E, Croia, M., Cros, B., Dale, J., Dattoli, G., Delerue, N., Delferriere, O., Delinikolas, P., Dias, J., Dorda, U., Ertel, K., Ferran Pousa, A., Ferrario, M., Filippi, F., Fils, J., Fiorito, R., Fonseca, R A, Galimberti, M., Gallo, A., Garzella, D., Gastinel, P., Giove, D., Giribono, A., Gizzi, L A, Grüner, F J, Habib, A F, Haefner, L C, Heinemann, T., Hidding, B., Holzer, B J, Hooker, S M, Hosokai, T., Irman, A., Jaroszynski, D A, Jaster-Merz, S., Joshi, C., Kaluza, M C, Kando, M., Karger, O S, Karsch, S., Khazanov, E., Khikhlukha, D., Knetsch, A., Kocon, D., Koester, P., Kononenko, O., Korn, G., Kostyukov, I., Labate, L., Lechner, C., Leemans, W P, Lehrach, A., Li, F Y, Li, X., Libov, V., Lifschitz, A., Litvinenko, V., Lu, W., Maier, A R, Malka, V., Manahan, G G, Mangles, S P D, Marchetti, B., Marocchino, A., Martinez de la Ossa, A, Martins, J L, Massimo, F., Mathieu, F., Maynard, G., Mehrling, T J, Molodozhentsev, A Y, Mosnier, A., Mostacci, A., Mueller, A S, Najmudin, Z., Nghiem, P A P, Nguyen, F., Niknejadi, P., Osterhoff, J., Papadopoulos, D., Patrizi, B., Pattathil, R., Petrillo, V., Pocsai, M A, Poder, K., Pompili, R., Pribyl, L., Pugacheva, D., Romeo, S., Rossi, A R, Roussel, E., Sahai, A A, Scherkl, P., Schramm, U., Schroeder, C B, Schwindling, J., Scifo, J., Serafini, L., Sheng, Z M, Silva, L O, Silva, T., Simon, C., Sinha, U., Specka, A., Streeter, M J V, Svystun, E N, Symes, D., Szwaj, C., Tauscher, G., Thomas, A G R, Thompson, N., Toci, G., Tomassini, P., Vaccarezza, C., Vannini, M., Vieira, J M, Villa, F., Wahlström, C.-G., Walczak, R., Weikum, M K, Welsch, C P, Wiemann, C., Wolfenden, J., Xia, G., Yabashi, M., Yu, L., Zhu, J., and Zigler, A.
- Abstract
The Horizon 2020 Project EuPRAXIA ("European Plasma Research Accelerator with eXcellence In Applications") is preparing a conceptual design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020.
- Published
- 2017
150. Spectral and spatial characterisation of laser-driven positron beams
- Author
-
Sarri, G., Warwick, J., Schumaker, W., Poder, K., Cole, J., Doria, D., Dzelzainis, T., Krushelnick, K., Kuschel, S., Mangles, S. P. D., Najmudin, Z., Romagnani, L., Samarin, G. M., Symes, D., Thomas, A. G. R., Yeung, M., Zepf, M., Sarri, G., Warwick, J., Schumaker, W., Poder, K., Cole, J., Doria, D., Dzelzainis, T., Krushelnick, K., Kuschel, S., Mangles, S. P. D., Najmudin, Z., Romagnani, L., Samarin, G. M., Symes, D., Thomas, A. G. R., Yeung, M., and Zepf, M.
- Abstract
The generation of high-quality relativistic positron beams is a central area of research in experimental physics, due to their potential relevance in a wide range of scientific and engineering areas, ranging from fundamental science to practical applications. There is now growing interest in developing hybrid machines that will combine plasma-based acceleration techniques with more conventional radio-frequency accelerators, in order to minimise the size and cost of these machines. Here we report on recent experiments on laser-driven generation of high-quality positron beams using a relatively low energy and potentially table-top laser system. The results obtained indicate that current technology allows to create, in a compact setup, positron beams suitable for injection in radio-frequency accelerators.
- Published
- 2017
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.