51. Registration of 3D ultrasound computer tomography and MRI for evaluation of tissue correspondences
- Author
-
Michael Zapf, Nicole V. Ruiter, Torsten Hopp, Hartmut Gemmeke, Robin Dapp, and Ernst Kretzek
- Subjects
medicine.medical_specialty ,Image fusion ,Modality (human–computer interaction) ,medicine.diagnostic_test ,business.industry ,Breast imaging ,Computer science ,Image registration ,Magnetic resonance imaging ,medicine.disease ,Breast cancer ,medicine ,3D ultrasound ,Medical physics ,Ultrasonic Tomography ,Tomography ,Ultrasonography ,business ,Biomedical engineering - Abstract
3D Ultrasound Computer Tomography (USCT) is a new imaging method for breast cancer diagnosis. In the current state of development it is essential to correlate USCT with a known imaging modality like MRI to evaluate how different tissue types are depicted. Due to different imaging conditions, e.g. with the breast subject to buoyancy in USCT, a direct correlation is demanding. We present a 3D image registration method to reduce positioning differences and allow direct side-by-side comparison of USCT and MRI volumes. It is based on a two-step approach including a buoyancy simulation with a biomechanical model and free form deformations using cubic B-Splines for a surface refinement. Simulation parameters are optimized patient-specifically in a simulated annealing scheme. The method was evaluated with in-vivo datasets resulting in an average registration error below 5mm. Correlating tissue structures can thereby be located in the same or nearby slices in both modalities and three-dimensional non-linear deformations due to the buoyancy are reduced. Image fusion of MRI volumes and USCT sound speed volumes was performed for intuitive display. By applying the registration to data of our first in-vivo study with the KIT 3D USCT, we could correlate several tissue structures in MRI and USCT images and learn how connective tissue, carcinomas and breast implants observed in the MRI are depicted in the USCT imaging modes.
- Published
- 2015
- Full Text
- View/download PDF