Goujaud, Baptiste, Moucer, C��line, Glineur, Fran��ois, Hendrickx, Julien, Taylor, Adrien, Dieuleveut, Aymeric, Centre de Mathématiques Appliquées - Ecole Polytechnique (CMAP), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Département d'informatique - ENS Paris (DI-ENS), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), École des Ponts ParisTech (ENPC), Statistical Machine Learning and Parsimony (SIERRA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria), Université Catholique de Louvain = Catholic University of Louvain (UCL), The work of B. Goujaud and A. Dieuleveut is partially supported by ANR-19-CHIA-0002-01/chaire SCAI, and Hi!Paris. A. Taylor acknowledges support from the European Research Council (grant SEQUOIA 724063). This work was partly funded by the French government under management of Agence Nationale de la Recherche as part of the 'Investissements d’avenir' program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute)., and ANR-19-CHIA-0002,SCAI,Inférence statistique, méthodes numériques et Intelligence Artificielle(2019)
PEPit is a Python package aiming at simplifying the access to worst-case analyses of a large family of first-order optimization methods possibly involving gradient, projection, proximal, or linear optimization oracles, along with their approximate, or Bregman variants. In short, PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods. The key underlying idea is to cast the problem of performing a worst-case analysis, often referred to as a performance estimation problem (PEP), as a semidefinite program (SDP) which can be solved numerically. For doing that, the package users are only required to write first-order methods nearly as they would have implemented them. The package then takes care of the SDP modelling parts, and the worst-case analysis is performed numerically via a standard solver., Reference work for the PEPit package (available at https://github.com/bgoujaud/PEPit)