Back to Search
Start Over
A splitting method for SDEs with locally Lipschitz drift : illustration on the FitzHugh-Nagumo model
- Source :
- Applied Numerical Mathematics, Applied Numerical Mathematics, 2022, 179, pp.191-220. ⟨10.1016/j.apnum.2022.04.018⟩
- Publication Year :
- 2022
- Publisher :
- Elsevier BV, 2022.
-
Abstract
- In this article, we construct and analyse an explicit numerical splitting method for a class of semi-linear stochastic differential equations (SDEs) with additive noise, where the drift is allowed to grow polynomially and satisfies a global one-sided Lipschitz condition. The method is proved to be mean-square convergent of order 1 and to preserve important structural properties of the SDE. First, it is hypoelliptic in every iteration step. Second, it is geometrically ergodic and has an asymptotically bounded second moment. Third, it preserves oscillatory dynamics, such as amplitudes, frequencies and phases of oscillations, even for large time steps. Our results are illustrated on the stochastic FitzHugh-Nagumo model and compared with known mean-square convergent tamed/truncated variants of the Euler-Maruyama method. The capability of the proposed splitting method to preserve the aforementioned properties may make it applicable within different statistical inference procedures. In contrast, known Euler-Maruyama type methods commonly fail in preserving such properties, yielding ill-conditioned likelihood-based estimation tools or computationally infeasible simulation-based inference algorithms.<br />38 pages, 10 figures
- Subjects :
- Numerical Analysis
Applied Mathematics
Ergodicity
Probability (math.PR)
Splitting methods
Numerical Analysis (math.NA)
Dynamical Systems (math.DS)
60H10, 60H35, 65C20, 65C30
Locally Lipschitz drift
Computational Mathematics
[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]
Hypoellipticity
FitzHugh-Nagumo model
Mean-square convergence AMS subject classifications 60H10
Stochastic differential equations
FOS: Mathematics
Mathematics - Numerical Analysis
Mathematics - Dynamical Systems
QA
Mathematics - Probability
Subjects
Details
- Language :
- English
- ISSN :
- 01689274
- Database :
- OpenAIRE
- Journal :
- Applied Numerical Mathematics, Applied Numerical Mathematics, 2022, 179, pp.191-220. ⟨10.1016/j.apnum.2022.04.018⟩
- Accession number :
- edsair.doi.dedup.....97382586927aa7a1d10d3bf100f7576b
- Full Text :
- https://doi.org/10.1016/j.apnum.2022.04.018⟩