51. Planning and Management of a solar power-based distribution system
- Author
-
Nayar, Priya
- Subjects
- Battery energy storage systems, Battery life cycle, Battery placement, Battery storage control, BESS placement optimisation, Control techniques, Demand response, Harmonics, High PV penetration, Load demand, MPPT, Network upgrade deferral, Power quality, Reverse power flow, Solar PV, Voltage regulation algorithms and methods, Voltage rise, anzsrc-for: 40 ENGINEERING
- Abstract
This thesis is aimed at the response of the power system network to the integration of solar photovoltaic (PV) generation and battery energy storage systems (BESS). Any solar power–based system integrated into a grid has voltage fluctuations that must be controlled through adaptive and robust control algorithms. The siting of battery in a distribution system affects system performance, including voltage regulation, system losses and cost minimization. In particular, here the aim is to analyse how the present-day schemes and technologies affect voltages, and their control, in the network. Another focus is on the optimal placement of BESS to facilitate system loss minimisation and cost reduction in the system. The battery placement optimisation is achieved through the minimisation of the losses in, and the cost of, the system. The voltage regulation is achieved through two control algorithms: Synchronous Reference Frame theory (SRFT) and adaptive linear neural network (ADALINE), which are subsequently modified by incorporation of fuzzy logic into the control system. Both battery placement optimisation and improvements to voltage regulation are shown to improve performance of the system. A further aim of this work is to improve cooperation between present day grid regulation equipment and schemes and the conventional methods through advancements in the control techniques. The aims of this thesis are as follows: 1. It is essential to place BESSs optimally. The aim of the thesis is to study and enhance the method of the optimal siting of battery energy storage in the presence of renewable energy–based power generating sources (RES)– such as solar PV – in a low-voltage power system network. A model for optimisation is developed to potentially find the battery site that enhances the hosting capability of the RES of the power system network. Among the essential points of this technique are its accuracy and robust nature. The fitness function includes the minimisation of the cost of operation and of system losses. 2. The second research objective is to examine the power control techniques of the inverter that might be leading to the voltage quality issues during unbalanced voltage scenarios, especially with solar PV–based generation in the power system. As such, after the implementation of the suggested coordination of the control mechanism into the grid under study, the variations in the voltage due to the solar PV variability dynamics are regulated more quickly and more precisely compared with the control schemes employed in the past. This substantially minimises the voltage fluctuations in time and amplitude, helps in mitigating hunting phenomena in voltage and provides alternative to the unnecessary control operations existing in the system.
- Published
- 2023