51. Existence and phase separation of entire solutions to a pure critical competitive elliptic system
- Author
-
Angela Pistoia and Mónica Clapp
- Subjects
Applied Mathematics ,010102 general mathematics ,Lambda ,01 natural sciences ,Delta-v (physics) ,010101 applied mathematics ,Sobolev space ,Combinatorics ,35J47 (35B08, 35B33, 35B40, 35J20) ,Mathematics - Analysis of PDEs ,Exponent ,FOS: Mathematics ,phase separation, competive system ,phase separation ,0101 mathematics ,competive system ,Analysis ,Mathematics ,Analysis of PDEs (math.AP) - Abstract
We establish the existence of a positive fully nontrivial solution (u, v) to the weakly coupled elliptic system $$\begin{aligned} {\left\{ \begin{array}{ll} -\,\Delta u=\mu _{1}|u|^{{2}^{*}-2}u+\lambda \alpha |u|^{\alpha -2}|v|^{\beta }u,\\ -\,\Delta v=\mu _{2}|v|^{{2}^{*}-2}v+\lambda \beta |u|^{\alpha } |v|^{\beta {-2} }v,\\ u,v\in D^{1,2}({\mathbb {R}}^{N}), \end{array}\right. } \end{aligned}$$ where $$N\ge 4,$$ $$2^{*}:=\frac{2N}{N-2}$$ is the critical Sobolev exponent, $$\alpha ,\beta \in (1,2],$$ $$\alpha +\beta =2^{*},$$ $$\mu _{1},\mu _{2}>0,$$ and $$\lambda
- Published
- 2017
- Full Text
- View/download PDF