Back to Search
Start Over
Super-critical boundary bubbling in a semilinear Neumann problem
- Source :
- ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, Artículos CONICYT, CONICYT Chile, instacron:CONICYT
- Publication Year :
- 2005
- Publisher :
- Elsevier BV, 2005.
-
Abstract
- In this paper we consider the following problem (0.1) { − Δ u + u = u N + 2 N − 2 + ɛ in Ω , u > 0 in Ω , ∂ u ∂ ν = 0 on ∂ Ω , where Ω is a smooth bounded domain in R N and N ⩾ 3 . We prove the existence of a one-spike solution to (0.1) which concentrates around a topologically non trivial critical point of the mean curvature of the boundary with positive value. Under some symmetry assumption on Ω, namely if Ω is even with respect to N − 1 variables and 0 ∈ ∂ Ω is a point with positive mean curvature, we prove existence of solutions to (0.1) which resemble the form of a super-position of spikes centered at 0.
Details
- ISSN :
- 02941449
- Volume :
- 22
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Annales de l'Institut Henri Poincare (C) Non Linear Analysis
- Accession number :
- edsair.doi.dedup.....b0ca0a22e061f7cfcd7c7db9b8704298
- Full Text :
- https://doi.org/10.1016/j.anihpc.2004.05.001