51. Synthesis and evaluation of salt tolerant delayed-crosslinking fracturing fluid system in ultra-deep high temperature wells.
- Author
-
Jian, Cheng, Yu, Yi, Yu, Dingze, Chen, Ping, Yan, Jing, and Chen, Xuefeng
- Subjects
- *
DRAG reduction , *FRACTURING fluids , *MEASUREMENT of viscosity , *THERMAL resistance , *ADDITION polymerization , *WATER salinization - Abstract
The Tarim area, characterized by deep reservoirs, high temperatures, and limited fresh water resources, necessitates a fracturing fluid system that exhibits excellent temperature shear resistance, low friction, and salinity tolerance. This study presents the development of a zwitterionic hydrophobic polymer, HPC-5, as an effective thickener using five types of polymeric monomers, including AM, AA, DMC, AMPS, and a non-ionic hydrophobic monomer. The method employed for synthesis was free-radical polymerization in solution. A series of experiments including viscosity measurement with variation of salinity, solubility and drag reduction test, crosslinking test, thermal and shear resistance, sand-carrying test, gel breaking evaluation, and core damage test were conduct under the simulated reservoir conditions. The zwitterionic design imparts great salt tolerance to HPC-5, and the apparent viscosities of HPC-5 solutions can maintain comparably high values with 10×104 ppm NaCl and CaCl2 concentration. Meanwhile, the molecules of HPC-5 associate with each other to form tight net structures, resulting in an excellent viscoelasticity of the solution. To achieve high pump rate during hydraulic fracturing operation in ultra-deep reservoirs, the delayed crosslinking agent ZDC-L was prepared for forming a delayed crosslinking gel fracturing fluid system using reservoir brine, and the drag reduction rate can reach over 70% before crossing link within 4 min. Under pH = 4 conditions, the crosslinking time can be significantly delayed to over 4 min while maintaining exceptional temperature resistance up to 160 ℃ for the gel. These properties make it highly suitable for hydraulic fracturing operations in ultra-deep wells with temperatures reaching up to 7000 m depth at pump rates of 4~5m3/min. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF