592 results on '"Tam, P. H."'
Search Results
552. ORBITAL-PHASE-DEPENDENT γ-RAY EMISSIONS FROM THE BLACK WIDOW PULSAR.
- Author
-
Wu, E. M. H., Takata, J., Cheng, K. S., Huang, R. H. H., Hui, C. Y., Kong, A. K. H., Tam, P. H. T., and Wu, J. H. K.
- Subjects
FIELD emission ,PULSARS ,ORBITS (Astronomy) ,MAGNETOSPHERE ,STARS - Abstract
We report on evidence for orbital phase dependence of the γ-ray emission from the PSR B1957+20 black widow system using data from the Fermi Large Area Telescope. We divide an orbital cycle into two regions: one containing the inferior conjunction and the other containing the rest of the orbital cycle. We show that the observed spectra for the different orbital regions are fitted by different functional forms. The spectrum of the orbital region containing the inferior conjunction can be described by a power law with an exponential cutoff (PLE) model, which also gives the best-fit model for the orbital phase without the inferior conjunction, plus an extra component above ∼2.7 GeV. The emission above 3 GeV in this region is detected with a ∼7σ confidence level. The γ-ray data above ∼2.7 GeV are observed to be modulated at the orbital period at the ∼2.3σ level. We anticipate that the PLE component dominant below ∼2.7 GeV originates from the pulsar magnetosphere. We also show that inverse Compton scattering of the thermal radiation of the companion star off a “cold” ultrarelativistic pulsar wind can explain the extra component above ∼2.7 GeV. The black widow pulsar PSR B1957+20 may be a member of a new class of object, in the sense that the system is showing γ-ray emission with both magnetospheric and pulsar wind origins. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
553. Ovarian Stanniocalcin in Trout Is Differentially Glycosylated and Preferentially Expressed in Early Stage Oocytes1
- Author
-
McCudden, Christopher R., Tam, W. H., and Wagner, Graham F.
- Published
- 2001
- Full Text
- View/download PDF
554. Follistatin Suppresses Steroid-Enhanced Follicle-Stimulating Hormone Release In Vitro in Rats1
- Author
-
Bohnsack, Brenda L., Szabo, Marta, Kilen, Signe M., Tam, Denise H. Y., and Schwartz, Neena B.
- Published
- 2000
- Full Text
- View/download PDF
555. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF GRB 110625A.
- Author
-
Tam, P. H. T., Kong, A. K. H., and Fan, Yi-Zhong
- Subjects
- *
GAMMA ray bursts , *PHOTON emission , *GAMMA ray astronomy , *TELESCOPES , *ULTRAVIOLET radiation - Abstract
Gamma-ray bursts (GRBs) that emit photons at GeV energies form a small but significant population of GRBs. However, the number of GRBs whose GeV-emitting period is simultaneously observed in X-rays remains small. We report γ-ray observations of GRB 110625A using Fermi's Large Area Telescope in the energy range 100 MeV-20 GeV. Gamma-ray emission at these energies was clearly detected using data taken between 180 s and 580 s after the burst, an epoch after the prompt emission phase. The GeV light curve differs from a simple power-law decay, and probably consists of two emission periods. Simultaneous Swift X-Ray Telescope observations did not show flaring behaviors as in the case of GRB 100728A. We discuss the possibility that the GeV emission is the synchrotron self-Compton radiation of underlying ultraviolet flares. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
556. THE FUNDAMENTAL PLANE OF GAMMA-RAY GLOBULAR CLUSTERS.
- Author
-
Hui, C. Y., Cheng, K. S., Wang, Y., Tam, P. H. T., Kong, A. K. H., Chernyshov, D. O., and Dogiel, V. A.
- Published
- 2011
- Full Text
- View/download PDF
557. VERY HIGH ENERGY γ-RAY AFTERGLOW EMISSION OF NEARBY GAMMA-RAY BURSTS.
- Author
-
Xue, R. R., Tam, P. H., Wagner, S. J., Behera, B., Fan, Y. Z., and Wei, D. M.
- Published
- 2009
- Full Text
- View/download PDF
558. The effect of continuous treatment with prostaglandin F-2α on oestrous cycle length and corpus luteum regression in hysterectomized guinea-pigs
- Author
-
Tso, E. C.-F. and Tam, W. H.
- Abstract
It has been established that prostaglandin (PG) F-2α induces the involution of corpora lutea (CL) in hysterectomized guinea-pigs (Blatchley & Donovan, 1969) and that the guinea-pig uterus is probably the major source of this luteolytic factor (Poyser, 1972). However, the measurement of PGF-2α levels in the utero-ovarian venous plasma of cyclic guinea-pigs (Blatchley, Donovan, Horton & Poyser, 1972) revealed that, even though the concentration was low, PGF-2α was present throughout the oestrous cycle and that there was asynchrony in luteal regression (Days 12–16: Rowlands, 1956) and the peak of PGF-2α secretion (Day 15: Blatchley et al., 1972). During experiments to study the effects of PGF-2α on the different tissue components of the ovary, it was found that the CL responded to the luteolytic action of PGF-2α only at certain times.
- Published
- 1977
- Full Text
- View/download PDF
559. In VitroCeftriaxone Susceptibility in Methicillin-Susceptible Staphylococcus aureus
- Author
-
Phe, Kady, Dao, Dorothy, Palmer, Hannah R., and Tam, Vincent H.
- Published
- 2014
- Full Text
- View/download PDF
560. Reply to “Measuring Polymyxin Uptake by Renal Tubular Cells: Is BODIPY-Polymyxin B an Appropriate Probe?”
- Author
-
Abdelraouf, Kamilia and Tam, Vincent H.
- Published
- 2014
- Full Text
- View/download PDF
561. Coronal image of non-contrast abdominal computed tomography
- Author
-
Boles, Ambrose and Tam, Henry H
- Published
- 2013
- Full Text
- View/download PDF
562. Simultaneous multi-wavelength campaign on PKS 2005-489 in a high state
- Author
-
Abramowski, A., Acero, F., Aharonian, F., Akhperjanian, A. G., Anton, G., Barnacka, A., Barres de Almeida, U., Bazer-Bachi, A. R., Becherini, Y., Becker, J., Behera, B., Bernlöhr, K., Bochow, A., Boisson, C., Bolmont, J., Bordas, P., Borrel, V., Brucker, J., Brun, F., Brun, P., Bulik, T., Büsching, I., Casanova, S., Cerruti, M., Chadwick, P. M., Charbonnier, A., Chaves, R. C. G., Cheesebrough, A., Chounet, L.-M., Clapson, A. C., Coignet, G., Conrad, J., Dalton, M., Daniel, M. K., Davids, I. D., Degrange, B., Deil, C., Dickinson, H. J., Djannati-Ataï, A., Domainko, W., Drury, L. O’C., Dubois, F., Dubus, G., Dyks, J., Dyrda, M., Egberts, K., Eger, P., Espigat, P., Fallon, L., Farnier, C., Fegan, S., Feinstein, F., Fernandes, M. V., Fiasson, A., Fontaine, G., Förster, A., Füßling, M., Gabici, S., Gallant, Y. A., Gast, H., Gérard, L., Gerbig, D., Giebels, B., Glicenstein, J. F., Glück, B., Goret, P., Göring, D., Hague, J. D., Hampf, D., Hauser, M., Heinz, S., Heinzelmann, G., Henri, G., Hermann, G., Hinton, J. A., Hoffmann, A., Hofmann, W., Hofverberg, P., Horns, D., Jacholkowska, A., de Jager, O. C., Jahn, C., Jamrozy, M., Jung, I., Kastendieck, M. A., Katarzyński, K., Katz, U., Kaufmann, S., Keogh, D., Kerschhaggl, M., Khangulyan, D., Khélifi, B., Klochkov, D., Kluźniak, W., Kneiske, T., Komin, Nu., Kosack, K., Kossakowski, R., Laffon, H., Lamanna, G., Lenain, J.-P., Lennarz, D., Lohse, T., Lopatin, A., Lu, C.-C., Marandon, V., Marcowith, A., Masbou, J., Maurin, D., Maxted, N., McComb, T. J. L., Medina, M. C., Méhault, J., Nguyen, N., Moderski, R., Moulin, E., Naumann-Godo, M., de Naurois, M., Nedbal, D., Nekrassov, D., Nicholas, B., Niemiec, J., Nolan, S. J., Ohm, S., Olive, J.-F., de Oña Wilhelmi, E., Opitz, B., Ostrowski, M., Panter, M., Paz Arribas, M., Pedaletti, G., Pelletier, G., Petrucci, P.-O., Pita, S., Pühlhofer, G., Punch, M., Quirrenbach, A., Raue, M., Rayner, S. M., Reimer, A., Reimer, O., Renaud, M., de los Reyes, R., Rieger, F., Ripken, J., Rob, L., Rosier-Lees, S., Rowell, G., Rudak, B., Rulten, C. B., Ruppel, J., Ryde, F., Sahakian, V., Santangelo, A., Schlickeiser, R., Schöck, F. M., Schönwald, A., Schwanke, U., Schwarzburg, S., Schwemmer, S., Shalchi, A., Sikora, M., Skilton, J. L., Sol, H., Spengler, G., Stawarz, Ł., Steenkamp, R., Stegmann, C., Stinzing, F., Sushch, I., Szostek, A., Tam, P. H., Tavernet, J.-P., Terrier, R., Tibolla, O., Tluczykont, M., Valerius, K., van Eldik, C., Vasileiadis, G., Venter, C., Vialle, J. P., Viana, A., Vincent, P., Vivier, M., Völk, H. J., Volpe, F., Vorobiov, S., Vorster, M., Wagner, S. J., Ward, M., Wierzcholska, A., Zajczyk, A., Zdziarski, A. A., Zech, A., Zechlin, H.-S., Abdo, A. A., Ackermann, M., Ajello, M., Baldini, L., Ballet, J., Barbiellini, G., Bastieri, D., Bechtol, K., Bellazzini, R., Berenji, B., Blandford, R. D., Bonamente, E., Borgland, A. W., Bregeon, J., Brez, A., Brigida, M., Bruel, P., Buehler, R., Buson, S., Caliandro, G. A., Cameron, R. A., Cannon, A., Caraveo, P. A., Carrigan, S., Casandjian, J. M., Cavazzuti, E., Cecchi, C., Çelik, Ö., Chekhtman, A., Cheung, C. C., Chiang, J., Ciprini, S., Claus, R., Cohen-Tanugi, J., Cutini, S., Dermer, C. D., de Palma, F., do Couto e Silva, E., Drell, P. S., Dubois, R., Dumora, D., Escande, L., Favuzzi, C., Ferrara, E. C., Focke, W. B., Fortin, P., Frailis, M., Fukazawa, Y., Fusco, P., Gargano, F., Gasparrini, D., Gehrels, N., Germani, S., Giglietto, N., Giommi, P., Giordano, F., Giroletti, M., Glanzman, T., Godfrey, G., Grenier, I. A., Grove, J. E., Guiriec, S., Hadasch, D., Hays, E., Horan, D., Hughes, R. E., Jóhannesson, G., Johnson, A. S., Johnson, W. N., Kamae, T., Katagiri, H., Kataoka, J., Knödlseder, J., Kuss, M., Lande, J., Latronico, L., Lee, S.-H., Longo, F., Loparco, F., Lott, B., Lovellette, M. N., Lubrano, P., Madejski, G. M., Makeev, A., Mazziotta, M. N., McConville, W., McEnery, J. E., Michelson, P. F., Mizuno, T., Monte, C., Monzani, M. E., Morselli, A., Moskalenko, I. V., Murgia, S., Nakamori, T., Nishino, S., Nolan, P. L., Norris, J. P., Nuss, E., Ohsugi, T., Okumura, A., Omodei, N., Orlando, E., Ormes, J. F., Ozaki, M., Paneque, D., Panetta, J. H., Parent, D., Pelassa, V., Pepe, M., Pesce-Rollins, M., Piron, F., Porter, T. A., Rainò, S., Rando, R., Razzano, M., Sadrozinski, H. F.-W., Sanchez, D., Sander, A., Sgrò, C., Siskind, E. J., Smith, P. D., Spandre, G., Spinelli, P., Strickman, M. S., Suson, D. J., Takahashi, H., Takahashi, T., Tanaka, T., Thayer, J. B., Thayer, J. G., Thompson, D. J., Tibaldo, L., Torres, D. F., Tosti, G., Tramacere, A., Troja, E., Uehara, T., Usher, T. L., Vandenbroucke, J., Vianello, G., Vilchez, N., Vitale, V., Waite, A. P., Wang, P., Winer, B. L., Wood, K. S., Yang, Z., Ylinen, T., and Ziegler, M.
- Abstract
The high-frequency peaked BL Lac object PKS 2005-489 was the target of a multi-wavelength campaign with simultaneous observations in the TeV γ-ray (H.E.S.S.), GeV γ-ray (Fermi/LAT), X-ray (RXTE, Swift), UV (Swift) and optical (ATOM, Swift) bands. This campaign was carried out during a high flux state in the synchrotron regime. The flux in the optical and X-ray bands reached the level of the historical maxima. The hard GeV spectrum observed with Fermi/LAT connects well to the very high energy (VHE, E> 100 GeV) spectrum measured with H.E.S.S.
- Published
- 2011
- Full Text
- View/download PDF
563. Primary particle acceleration above 100 TeV in the shell-type supernova remnant RX J1713.7 − 3946 with deep H.E.S.S. observations (Corrigendum)
- Author
-
Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., Beilicke, M., Benbow, W., Berge, D., Bernlöhr, K., Boisson, C., Bolz, O., Borrel, V., Braun, I., Brion, E., Brown, A. M., Bühler, R., Büsching, I., Carrigan, S., Chadwick, P. M., Chounet, L.-M., Coignet, G., Cornils, R., Costamante, L., Degrange, B., Dickinson, H. J., Djannati-Ataï, A., Drury, L.O’C., Dubus, G., Egberts, K., Emmanoulopoulos, D., Espigat, P., Feinstein, F., Ferrero, E., Fiasson, A., Fontaine, G., Funk, Seb., Funk, S., Füßling, M., Gallant, Y. A., Giebels, B., Glicenstein, J. F., Glück, B., Goret, P., Hadjichristidis, C., Hauser, D., Hauser, M., Heinzelmann, G., Henri, G., Hermann, G., Hinton, J. A., Hoffmann, A., Hofmann, W., Holleran, M., Hoppe, S., Horns, D., Jacholkowska, A., de Jager, O. C., Kendziorra, E., Kerschhaggl, M., Khélifi, B., Komin, Nu., Konopelko, A., Kosack, K., Lamanna, G., Latham, I. J., Le Gallou, R., Lemière, A., Lemoine-Goumard, M., Lohse, T., Martin, J. M., Martineau-Huynh, O., Marcowith, A., Masterson, C., Maurin, G., McComb, T. J.L., Moulin, E., de Naurois, M., Nedbal, D., Nolan, S. J., Noutsos, A., Olive, J.-P., Orford, K. J., Osborne, J. L., Panter, M., Pelletier, G., Pita, S., Pühlhofer, G., Punch, M., Ranchon, S., Raubenheimer, B. C., Raue, M., Rayner, S. M., Reimer, A., Reimer, O., Ripken, J., Rob, L., Rolland, L., Rosier-Lees, S., Rowell, G., Sahakian, V., Santangelo, A., Saugé, L., Schlenker, S., Schlickeiser, R., Schröder, R., Schwanke, U., Schwarzburg, S., Schwemmer, S., Shalchi, A., Sol, H., Spangler, D., Spanier, F., Steenkamp, R., Stegmann, C., Superina, G., Tam, P. H., Tavernet, J.-P., Terrier, R., Tluczykont, M., van Eldik, C., Vasileiadis, G., Venter, C., Vialle, J. P., Vincent, P., Völk, H. J., Wagner, S. J., and Ward, M.
- Published
- 2011
- Full Text
- View/download PDF
564. Discovery of VHE γ-rays from the BL Lacertae object PKS 0548–322
- Author
-
Aharonian, F., Akhperjanian, A. G., Anton, G., Barres de Almeida, U., Bazer-Bachi, A. R., Becherini, Y., Behera, B., Benbow, W., Bernlöhr, K., Bochow, A., Boisson, C., Bolmont, J., Borrel, V., Brucker, J., Brun, F., Brun, P., Bühler, R., Bulik, T., Büsching, I., Boutelier, T., Chadwick, P. M., Charbonnier, A., Chaves, R. C. G., Cheesebrough, A., Chounet, L.-M., Clapson, A. C., Coignet, G., Dalton, M., Daniel, M. K., Davids, I. D., Degrange, B., Deil, C., Dickinson, H. J., Djannati-Ataï, A., Domainko, W., O'C. Drury, L., Dubois, F., Dubus, G., Dyks, J., Dyrda, M., Egberts, K., Emmanoulopoulos, D., Espigat, P., Farnier, C., Feinstein, F., Fiasson, A., Förster, A., Fontaine, G., Füßling, M., Gabici, S., Gallant, Y. A., Gérard, L., Gerbig, D., Giebels, B., Glicenstein, J. F., Glück, B., Goret, P., Göring, D., Hauser, D., Hauser, M., Heinz, S., Heinzelmann, G., Henri, G., Hermann, G., Hinton, J. A., Hoffmann, A., Hofmann, W., Holleran, M., Hoppe, S., Horns, D., Jacholkowska, A., de Jager, O. C., Jahn, C., Jung, I., Katarzyński, K., Katz, U., Kaufmann, S., Kendziorra, E., Kerschhaggl, M., Khangulyan, D., Khélifi, B., Keogh, D., Kluźniak, W., Kneiske, T., Komin, Nu., Kosack, K., Lamanna, G., Lenain, J.-P., Lohse, T., Marandon, V., Martin, J. M., Martineau-Huynh, O., Marcowith, A., Masbou, J., Maurin, D., McComb, T. J. L., Medina, M. C., Moderski, R., Moulin, E., Naumann-Godo, M., de Naurois, M., Nedbal, D., Nekrassov, D., Nicholas, B., Niemiec, J., Nolan, S. J., Ohm, S., Olive, J.-F., de Oña Wilhelmi, E., Orford, K. J., Ostrowski, M., Panter, M., Paz Arribas, M., Pedaletti, G., Pelletier, G., Petrucci, P.-O., Pita, S., Pühlhofer, G., Punch, M., Quirrenbach, A., Raubenheimer, B. C., Raue, M., Rayner, S. M., Renaud, M., Rieger, F., Ripken, J., Rob, L., Rosier-Lees, S., Rowell, G., Rudak, B., Rulten, C. B., Ruppel, J., Sahakian, V., Santangelo, A., Schlickeiser, R., Schöck, F. M., Schröder, R., Schwanke, U., Schwarzburg, S., Schwemmer, S., Shalchi, A., Sikora, M., Skilton, J. L., Sol, H., Spangler, D., Stawarz, Ł., Steenkamp, R., Stegmann, C., Stinzing, F., Superina, G., Szostek, A., Tam, P. H., Tavernet, J.-P., Terrier, R., Tibolla, O., Tluczykont, M., van Eldik, C., Vasileiadis, G., Venter, C., Venter, L., Vialle, J. P., Vincent, P., Vivier, M., Völk, H. J., Volpe, F., Wagner, S. J., Ward, M., Zdziarski, A. A., and Zech, A.
- Abstract
Aims. PKS 0548–322 (z= 0.069) is a “high-frequency-peaked” BL Lac object and a candidate very high energy (VHE, E> 100 GeV) γ-ray emitter, due to its high X-ray and radio flux. Observations at the VHE band provide insights into the origin of very energetic particles present in this source and the radiation processes at work.
- Published
- 2010
- Full Text
- View/download PDF
565. A search for VHE counterparts of Galactic Fermibright sources and MeV to TeV spectral characterization
- Author
-
Tam, P. H. T., Wagner, S. J., Tibolla, O., and Chaves, R. C. G.
- Abstract
Very high-energy (VHE; E> 100 GeV) γ-rays have been detected in a wide range of astronomical objects, such as pulsar wind nebulae (PWNe), supernova remnants (SNRs), giant molecular clouds, γ-ray binaries, the Galactic center, active galactic nuclei (AGN), radio galaxies, starburst galaxies, and possibly star-forming regions. At lower energies, observations using the Large Area Telescope (LAT) onboard Fermiprovide a rich set of data that can be used to study the behavior of cosmic accelerators in the MeV to TeV energy bands. In particular, the improved angular resolution of current telescopes in both bands compared to previous instruments significantly reduces source confusion and facilitates identification of associated counterparts at lower energies. In this paper, a comprehensive search for VHE γ-ray sources that are spatially coincident with Galactic Fermi/LAT bright sources is performed, and the available MeV to TeV spectra of coincident sources compared. It is found that bright LAT GeV sources are correlated with TeV sources, in contrast to previous studies using EGRET data. Moreover, a single spectral component seems unable to describe the MeV to TeV spectra of many coincident GeV/TeV sources. It has been suggested that γ-ray pulsars may be accompanied by VHE γ-ray emitting nebulae, a hypothesis that can be tested with VHE observations of these pulsars.
- Published
- 2010
566. First detection of VHE γ-rays from SN 1006 by HESS
- Author
-
Acero, F., Aharonian, F., Akhperjanian, A. G., Anton, G., Barres de Almeida, U., Bazer-Bachi, A. R., Becherini, Y., Behera, B., Beilicke, M., Bernlöhr, K., Bochow, A., Boisson, C., Bolmont, J., Borrel, V., Brucker, J., Brun, F., Brun, P., Bühler, R., Bulik, T., Büsching, I., Boutelier, T., Chadwick, P. M., Charbonnier, A., Chaves, R. C. G., Cheesebrough, A., Conrad, J., Chounet, L.-M., Clapson, A. C., Coignet, G., Dalton, M., Daniel, M. K., Davids, I. D., Degrange, B., Deil, C., Dickinson, H. J., Djannati-Ataï, A., Domainko, W., Drury, L. O'C., Dubois, F., Dubus, G., Dyks, J., Dyrda, M., Egberts, K., Eger, P., Espigat, P., Fallon, L., Farnier, C., Fegan, S., Feinstein, F., Fiasson, A., Förster, A., Fontaine, G., Füßling, M., Gabici, S., Gallant, Y. A., Gérard, L., Gerbig, D., Giebels, B., Glicenstein, J. F., Glück, B., Goret, P., Göring, D., Hauser, D., Hauser, M., Heinz, S., Heinzelmann, G., Henri, G., Hermann, G., Hinton, J. A., Hoffmann, A., Hofmann, W., Hofverberg, P., Holleran, M., Hoppe, S., Horns, D., Jacholkowska, A., de Jager, O. C., Jahn, C., Jung, I., Katarzyński, K., Katz, U., Kaufmann, S., Kerschhaggl, M., Khangulyan, D., Khélifi, B., Keogh, D., Klochkov, D., Kluźniak, W., Kneiske, T., Komin, Nu., Kosack, K., Kossakowski, R., Lamanna, G., Lemoine-Goumard, M., Lenain, J.-P., Lohse, T., Marandon, V., Marcowith, A., Masbou, J., Maurin, D., McComb, T. J. L., Medina, M. C., Méhault, J., Moderski, R., Moulin, E., Naumann-Godo, M., de Naurois, M., Nedbal, D., Nekrassov, D., Nicholas, B., Niemiec, J., Nolan, S. J., Ohm, S., Olive, J.-F., de Oña Wilhelmi, E., Orford, K. J., Ostrowski, M., Panter, M., Paz Arribas, M., Pedaletti, G., Pelletier, G., Petrucci, P.-O., Pita, S., Pühlhofer, G., Punch, M., Quirrenbach, A., Raubenheimer, B. C., Raue, M., Rayner, S. M., Reimer, O., Renaud, M., de los Reyes, R., Rieger, F., Ripken, J., Rob, L., Rosier-Lees, S., Rowell, G., Rudak, B., Rulten, C. B., Ruppel, J., Ryde, F., Sahakian, V., Santangelo, A., Schlickeiser, R., Schöck, F. M., Schönwald, A., Schwanke, U., Schwarzburg, S., Schwemmer, S., Shalchi, A., Sushch, I., Sikora, M., Skilton, J. L., Sol, H., Stawarz, Ł., Steenkamp, R., Stegmann, C., Stinzing, F., Superina, G., Szostek, A., Tam, P. H., Tavernet, J.-P., Terrier, R., Tibolla, O., Tluczykont, M., van Eldik, C., Vasileiadis, G., Venter, C., Venter, L., Vialle, J. P., Vincent, P., Vink, J., Vivier, M., Völk, H. J., Volpe, F., Vorobiov, S., Wagner, S. J., Ward, M., Zdziarski, A. A., and Zech, A.
- Abstract
Aims. Recent theoretical predictions of the lowest very high energy (VHE) luminosity of SN 1006 are only a factor 5 below the previously published HESS upper limit, thus motivating further in-depth observations of this source.Methods. Deep observations at VHE energies (above 100 GeV) were carried out with the high energy stereoscopic system (HESS) of Cherenkov Telescopes from 2003 to 2008. More than 100 h of data have been collected and subjected to an improved analysis procedure.Results. Observations resulted in the detection of VHE γ-rays from SN 1006. The measured γ-ray spectrum is compatible with a power-law, the flux is of the order of 1% of that detected from the Crab Nebula, and is thus consistent with the previously established HESS upper limit. The source exhibits a bipolar morphology, which is strongly correlated with non-thermal X-rays.Conclusions. Because the thickness of the VHE-shell is compatible with emission from a thin rim, particle acceleration in shock waves is likely to be the origin of the γ-ray signal. The measured flux level can be accounted for by inverse Compton emission, but a mixed scenario that includes leptonic and hadronic components and takes into account the ambient matter density inferred from observations also leads to a satisfactory description of the multi-wavelength spectrum.
- Published
- 2010
567. PKS?2005-489 at VHE: four years of monitoring with HESS and simultaneous multi-wavelength observations******
- Author
-
Collaboration, HESS, Acero, F., Aharonian, F., Akhperjanian, A. G., Anton, G., Barres de Almeida, U., Bazer-Bachi, A. R., Becherini, Y., Behera, B., Benbow, W., Bernlöhr, K., Bochow, A., Boisson, C., Bolmont, J., Borrel, V., Brucker, J., Brun, F., Brun, P., Bühler, R., Bulik, T., Büsching, I., Boutelier, T., Chadwick, P. M., Charbonnier, A., Chaves, R. C. G., Cheesebrough, A., Chounet, L.-M., Clapson, A. C., Coignet, G., Costamante, L., Dalton, M., Daniel, M. K., Davids, I. D., Degrange, B., Deil, C., Dickinson, H. J., Djannati-Ataï, A., Domainko, W., O'C. Drury, L., Dubois, F., Dubus, G., Dyks, J., Dyrda, M., Egberts, K., Eger, P., Espigat, P., Fallon, L., Farnier, C., Fegan, S., Feinstein, F., Fiasson, A., Förster, A., Fontaine, G., Füßling, M., Gabici, S., Gallant, Y. A., Gérard, L., Gerbig, D., Giebels, B., Glicenstein, J. F., Glück, B., Goret, P., Göring, D., Hauser, M., Heinz, S., Heinzelmann, G., Henri, G., Hermann, G., Hinton, J. A., Hoffmann, A., Hofmann, W., Hofverberg, P., Holleran, M., Hoppe, S., Horns, D., Jacholkowska, A., de Jager, O. C., Jahn, C., Jung, I., Katarzynski, K., Katz, U., Kaufmann, S., Kerschhaggl, M., Khangulyan, D., Khélifi, B., Keogh, D., Klochkov, D., Kluzniak, W., Kneiske, T., Komin, Nu., Kosack, K., Kossakowski, R., Lamanna, G., Lenain, J.-P., Lohse, T., Marandon, V., Martineau-Huynh, O., Marcowith, A., Masbou, J., Maurin, D., McComb, T. J. L., Medina, M. C., Méhault, J., Moderski, R., Moulin, E., Naumann-Godo, M., de Naurois, M., Nedbal, D., Nekrassov, D., Nicholas, B., Niemiec, J., Nolan, S. J., Ohm, S., Olive, J.-F., de Oña Wilhelmi, E., Orford, K. J., Ostrowski, M., Panter, M., Paz Arribas, M., Pedaletti, G., Pelletier, G., Petrucci, P.-O., Pita, S., Pühlhofer, G., Punch, M., Quirrenbach, A., Raubenheimer, B. C., Raue, M., Rayner, S. M., Renaud, M., Rieger, F., Ripken, J., Rob, L., Rosier-Lees, S., Rowell, G., Rudak, B., Rulten, C. B., Ruppel, J., Sahakian, V., Santangelo, A., Schlickeiser, R., Schöck, F. M., Schwanke, U., Schwarzburg, S., Schwemmer, S., Shalchi, A., Sikora, M., Skilton, J. L., Sol, H., Stawarz, L., Steenkamp, R., Stegmann, C., Stinzing, F., Superina, G., Szostek, A., Tam, P. H., Tavernet, J.-P., Terrier, R., Tibolla, O., Tluczykont, M., van Eldik, C., Vasileiadis, G., Venter, C., Venter, L., Vialle, J. P., Vincent, P., Vivier, M., Völk, H. J., Volpe, F., Wagner, S. J., Ward, M., Zdziarski, A. A., and Zech, A.
- Abstract
Aims. Our aim is to study the very high energy (VHE; E>100GeV) ?-ray emission from BL?Lac objects and the evolution in time of their broad-band spectral energy distribution (SED).Methods. VHE observations of the high-frequency peaked BL?Lac object PKS?2005-489 were made with the High Energy Stereoscopic System (HESS) from 2004 through 2007. Three simultaneous multi-wavelength campaigns at lower energies were performed during the HESS data taking, consisting of several individual pointings with the XMM-Newtonand RXTE satellites.Results. A strong VHE signal, ~17stotal, from PKS?2005-489 was detected during the four years of HESS observations (90.3 h live time). The integral flux above the average analysis threshold of 400 GeV is ~3% of the flux observed from the Crab Nebula and varies weakly on time scales from days to years. The average VHE spectrum measured from ~300 GeV to ~5 TeV is characterized by a power law with a photon index, $\Gamma = 3.20\pm 0.16_{\rm stat}\pm 0.10_{\rm syst}$. At X-ray energies the flux is observed to vary by more than an order of magnitude between 2004 and 2005. Strong changes in the X-ray spectrum ($\Delta\Gamma_{\rm X} \approx 0.7$) are also observed, which appear to be mirrored in the VHE band.Conclusions. The SED of PKS?2005-489, constructed for the first time with contemporaneous data on both humps, shows significant evolution. The large flux variations in the X-ray band, coupled with weak or no variations in the VHE band and a similar spectral behavior, suggest the emergence of a new, separate, harder emission component in September 2005.
- Published
- 2010
568. Mathematical modelling of resistance emergence
- Author
-
Tam, Vincent H. and Nikolaou, Michael
- Published
- 2005
- Full Text
- View/download PDF
569. Modelling time-kill studies to discern the pharmacodynamics of meropenem
- Author
-
Tam, Vincent H., Schilling, Amy N., and Nikolaou, Michael
- Abstract
<it>Objectives</it>: Time–kill studies are commonly used in investigations of new antimicrobial agents. However, they typically provide descriptive information on pharmacodynamics. We developed a mathematical model to capture the relationship between microbial burden and antimicrobial agent concentrations. <it>Methods</it>: Time–kill studies were performed with 108 cfu/mL of <it>Pseudomonas aeruginosa</it> at baseline. Meropenem at 0, 0.25, 1, 4, 16 and 64 × MIC was used (MIC = 1 mg/L). Serial samples were obtained to quantify bacterial burden over 24 h. The data were analysed by a population analysis using the non-parametric adaptive grid program. The rate of change of bacteria over time was expressed as the difference between linear bacterial growth rate and sigmoidal kill rate. Regrowth was attributed to adaptation, which was explicitly modelled as increase in <it>C</it><inf>50k</inf> (concentration to achieve 50% maximal kill rate), using a saturable function of selective pressure (both meropenem concentration and time). <it>Results</it>: The best-fit model consisted of eight parameters and the fit to the data was satisfactory. The <it>r</it>2 of maximum a-posteriori probability Bayesian predictions based on the mean parameter estimates was 0.984. Maximal killing rate at baseline was found to be 4.7 h−1; <it>C</it><inf>90k</inf> was achieved with meropenem at 5.0 mg/L. The model was validated by time–kill studies using 2× and 32× MIC of meropenem. <it>Conclusions</it>: Our model reasonably described and predicted the time course of <it>P. aeruginosa</it> in time–kill studies, and provided quantitative information on the pharmacodynamics of meropenem. The structural model appeared robust and could be used to provide a realistic expectation of the killing performance of antimicrobial agents.
- Published
- 2005
- Full Text
- View/download PDF
570. Prospective evaluation of pharmacokinetic model-controlled infusion of propofol in adult patients
- Author
-
Short, T. G., Lim, T. A., and Tam, Y. H.
- Published
- 1996
- Full Text
- View/download PDF
571. METABOLISM OF ANDROGENS BY THE ACTIVE AND INACTIVE PROSTATE GLAND, AND THE SEASONAL CHANGES IN SYSTEMIC ANDROGEN LEVELS IN THE GREY SQUIRREL (SCIURUS CAROLINENSISGMELIN)
- Author
-
SIWELA, A. A. and TAM, W. H.
- Abstract
The nuclear and cytoplasmic fractions derived from the actively secretory and inactive prostate of adult grey squirrels were incubated with radioactive testosterone and androstenedione. Testosterone was metabolized first to 5α-dihydrotestosterone and then 5 α-androstane-3α(β), 17β-diols. Testosterone could also be transformed into androstenedione and then to androsterone, but no 5α-dihydrotestosterone or diols could be synthesized from this pathway. Neither subcellular fraction of the inactive, non-secretory prostate could produce 5α-androstane-3α(β),17β-diols from testosterone either in the absence or presence of exogenous NADPH. The synthesis of androstenedione and 5α-dihydrotestosterone by the nuclear and cytoplasmic fractions of the inactive gland were significantly increased compared to that in fractions of the active prostate. The increase was unaffected by exogenous NADPH. The concentration of androgen (testosterone plus 5α-dihydrotestosterone) in systemic plasma was highest in December, the beginning of the breeding season. For the remainder of the breeding season, the androgen level was similar to that found in the non-breeding season. It is suggested that formation of 5α-androstane-3α(β),17β-diols was associated with the secretory activity of the prostate. The failure of the inactive prostate to synthesize these diols during sexual quiescence might be a means of ensuring the inactivity of the prostate.
- Published
- 1981
- Full Text
- View/download PDF
572. MAGICal GRB 190114C: Implications of Cutoff in the Spectrum at sub-GeV Energies.
- Author
-
Chand, Vikas, Pal, Partha Sarathi, Banerjee, Ankush, Sharma, Vidushi, Tam, P. H. T., and He, Xinbo
- Subjects
- *
GAMMA ray bursts , *PAIR production , *ELECTROMAGNETIC spectrum , *PHOTONS - Abstract
GRB 190114C is an unusual gamma-ray burst (GRB) due to its detection at sub-TeV energies by MAGIC, seen at redshift z = 0.42. This burst is one of the brightest GRB detected by Fermi. A joint GBM-LAT analysis of the prompt emission reveals the presence of sub-GeV spectral cutoff when the LAT low-energy event (LLE) data is also examined. A similar high-energy cutoff was likewise reported in GRB 160509A and GRB 100724B earlier, as well as a handful of other sources. The cutoff can be explained by the intrinsic opacity due to pair production within the emitting region. GRB 190114C shows a transition from nonthermal to a quasi-thermal-like spectrum and a radiation component that can be attributed to afterglow. Based on spectral analysis, we constrain the site of the prompt emission and Lorentz factor. Knowing that sub-TeV photons are detected in MAGIC, we perceive that the observed spectrum is indeed an overlap from two emission sites, where the emission observed in Fermi is more consistent with prompt emission produced via photospheric dissipation along with a concurrent component from the external shock. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
573. Peculiar Prompt Emission and Afterglow in the H.E.S.S.-detected GRB 190829A.
- Author
-
Chand, Vikas, Banerjee, Ankush, Gupta, Rahul, Dimple, Pal, Partha Sarathi, Joshi, Jagdish C., Zhang, Bin-Bin, Basak, R., Tam, P. H. T., Sharma, Vidushi, Pandey, S. B., Kumar, Amit, and Yang, Yi-Si
- Subjects
- *
GAMMA ray bursts , *HEAT , *PHOTONS , *RADIATION - Abstract
We present the results of a detailed investigation of the prompt and afterglow emission in the High Energy Stereoscopic System (H.E.S.S.)-detected GRB 190829A. Swift and Fermi observations of the prompt phase of this gamma-ray burst (GRB) reveal two isolated subbursts or episodes, separated by a quiescent phase. The energetic and the spectral properties of the first episode are in stark contrast to the second. The first episode, which has a higher spectral peak ∼120 keV and a low isotropic energy ∼1050 erg is an outlier to the Amati correlation and marginally satisfies the Yonetoku correlation. However, the energetically dominant second episode has lower peak energy and is consistent with the above correlations. We compared this GRB to other low-luminosity GRBs (LLGRBs). Prompt emission of LLGRBs also indicates a relativistic shock breakout origin of the radiation. For GRB 190829A, some of the properties of a shock breakout origin are satisfied. However, the absence of an accompanying thermal component and energy above the shock breakout critical limit precludes a shock breakout origin. In the afterglow, an unusual long-lasting late-time flare of duration ∼104 s is observed. We also analyzed the late-time Fermi Large Area Telescope (LAT) emission that encapsulates the H.E.S.S. detection. Some of the LAT photons are likely to be associated with the source. All of the above observational facts suggest GRB 190829A is a peculiar low-luminosity GRB that is not powered by a shock breakout, and has an unusual rebrightening due to patchy emission or a refreshed shock during the afterglow. Furthermore, our results show that teraelectronvolt-energy photons seem common in both high-luminosity GRBs and LLGRBs. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
574. Testing the CIBER cosmic infrared background measurements and axionlike particles with observations of TeV blazars.
- Author
-
Long, G. B., Lin, W. P., Tam, P. H. T., and Zhu, W. S.
- Subjects
- *
BL Lacertae objects , *HYPOTHETICAL particles , *GOODNESS-of-fit tests , *PARTICLES - Abstract
The first measurements from the CIBER experiment of extragalactic background light (EBL) in near-infrared (NIR) band exhibit a higher intensity than those inferred through γ-ray observations. Recent theoretical-EBL intensities are typically consistent with the very high energy (VHE) γ-ray observations. Yet, it is possible that the excess NIR radiation is a new component of EBL and not in tension with the TeV spectra of distant blazars, since the hypothetical axionlike particle (ALP) may lead to a reduced opacity of the Universe for VHE γ-rays. In order to probe whether the excess component arises mainly from EBL, thirteen observed spectra in high energy and VHE ranges from ten distant TeV BL Lac objects are fitted by four theoretical spectra which involve theoretical EBL (Gilmore et al.), Gilmore's EBL model including photon/ALP coupling, Gilmore's EBL with CIBER excess and the latter including photon/ALP coupling respectively. We find the goodness of fit for the model with CIBER excess can be improved with a significance of 7.6s after including the photon/ALP coupling. Thus, the ALP/photon mixing mechanism can effectively alleviate the tension; However, the Gilmore EBL model, on the whole, is more compatible with the observed spectra compared to those with ALP, although individual blazars such as PKS 1424+240 and 1ES 1101-232 prefer the ALP-model. Our results suggest that the recent EBL models can solely explain the VHE γ-ray observations, and assuming the existence of the ALP to alleviate the tension is not required in a statistical sense, thus the excess over the EBL models is less likely to be a new EBL component. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
575. The H.E.S.S. II GRB Observation Scheme.
- Author
-
Parsons, R. D., Schüssler, F., Garrigoux, T., Balzer, A., Füssling, M., Hoischen, C., Holler, M., Mitchell, A., Pühlhofer, G., Rowell, G., Wagner, S., Bissaldi, E., O'Brien, P., and Tam, P. H. T.
- Subjects
- *
GAMMA ray bursts , *FERMI Gamma-ray Space Telescope (Spacecraft) , *PHOTON statistics , *GAMMA ray telescopes , *ASTRONOMICAL observations - Abstract
Gamma-ray bursts (GRBs) are some of the Universe's most enigmatic and exotic events. However, at energies above 10 GeV their behaviour remains largely unknown. Although space based telescopes such as the Fermi-LAT have been able to detect GRBs in this energy range, their photon statistics are limited by the small detector size. Such limitations are not present in ground based gamma-ray telescopes such as the H.E.S.S. experiment, which has now entered its second phase with the addition of a large 600 m2 telescope to the centre of the array. Such a large telescope allows H.E.S.S. to access the sub 100-GeV energy range while still maintaining a large effective collection area, helping to potentially probe the short timescale emission of these events. We present a description of the H.E.S.S. GRB observation programme, summarising the performance of the rapid GRB repointing system and the conditions under which GRB observations are initiated. Additionally we will report on the GRB followups made during the 2014-15 observation campaigns. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
576. Broad-band high-energy emissions of the redback millisecond pulsar PSR J2129–0429.
- Author
-
Kong, Albert K H, Takata, Jumpei, Hui, C Y, Zhao, J, Li, K L, and Tam, P H T
- Subjects
- *
PULSARS , *GAMMA rays , *ASTRONOMICAL observations , *STELLAR atmospheres , *NEUTRON stars , *BINARY stars - Abstract
We present the first results from a joint XMM-Newton and NuSTAR observation of the gamma-ray emitting millisecond pulsar compact binary PSR J2129–0429. X-ray emission up to about 40 keV is detected and the joint spectrum can be modelled with a power-law plus a neutron star atmosphere model. At a distance of 1.4 kpc, the 0.3–79 keV luminosity is 3.56 × 1032 erg s−1. We also detected a 0.64-d binary orbital period with a double-peaked structure across the wavebands. By combining the updated Fermi GeV data, we modelled the broad-band spectral energy distribution as well as the X-ray modulation with an intrabinary model involving shock interaction between pulsar wind and outflow from the companion star. Lastly, we report a high-resolution X-ray image provided by Chandra to rule out the proposed pulsar wind nebula associated with PSR J2129–0429. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
577. Observing two dark accelerators around the Galactic Centre with Fermi Large Area Telescope.
- Author
-
Hui, C. Y., Yeung, P. K. H., Ng, C. W., Lin, L. C. C., Tam, P. H. T., Cheng, K. S., Kong, A. K. H., Chernyshov, D. O., and Dogiel, V. A.
- Subjects
- *
TELESCOPES , *PHOTONS , *DARK matter , *PARTICLE accelerators , *ELECTRON gas - Abstract
We report the results from a detailed γ-ray investigation in the field of two 'dark accelerators', HESS J1745−303 and HESS J1741−302, with 6.9 yr of data obtained by the Fermi Large Area Telescope. For HESS J1745−303, we found that its MeV-GeV emission is mainly originated from the 'Region A' of the TeV feature. Its γ-ray spectrum can be modelled with a single power law with a photon index of Γ ~ 2.5 from few hundreds MeV-TeV. Moreover, an elongated feature, which extends from 'Region A' towards north-west for ~1 °.3, is discovered for the first time. The orientation of this feature is similar to that of a large-scale atomic/molecular gas distribution. For HESS J1741−302, our analysis does not yield any MeV-GeV counterpart for this unidentified TeV source. On the other hand, we have detected a new point source, Fermi J1740.1−3013, serendipitously. Its spectrum is apparently curved which resembles that of a γ-ray pulsar. This makes it possibly associated with PSR B1737−20 or PSR J1739−3023. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
578. MULTI-WAVELENGTH EMISSIONS FROM THE MILLISECOND PULSAR BINARY PSR J1023+0038 DURING AN ACCRETION ACTIVE STATE.
- Author
-
Takata, J., Li, K. L., Leung, Gene C. K., Kong, A. K. H., Tam, P. H. T., Hui, C. Y., Wu, E. M. H., Xing, Yi, Cao, Yi, Tang, Sumin, Wang, Zhongxiang, and Cheng, K. S.
- Subjects
- *
ACCRETION disks , *BINARY stars , *PULSARS , *STELLAR winds , *GAMMA rays - Abstract
Recent observations strongly suggest that the millisecond pulsar binary PSR J1023+0038 has developed an accretion disk since 2013 June. We present a multi-wavelength analysis of PSR J1023+0038, which reveals that (1) its gamma-rays suddenly brightened within a few days in 2013 June/July and has remained at a high gamma-ray state for several months; (2) both UV and X-ray fluxes have increased by roughly an order of magnitude; and (3) the spectral energy distribution has changed significantly after the gamma-ray sudden flux change. Time variabilities associated with UV and X-rays are on the order of 100-500 s and 50-100 s, respectively. Our model suggests that a newly formed accretion disk, due to the sudden increase of the stellar wind, could explain the changes of all these observed features. The increase of UV is emitted from the disk, and a new component in gamma-rays is produced by inverse Compton scattering between the new UV component and pulsar wind. The increase of X-rays results from the enhancement of injection pulsar wind energy into the intra-binary shock due to the increase of the stellar wind. We also predict that the radio pulses may be blocked by the evaporated winds from the disk, and the pulsar is still powered by rotation. [ABSTRACT FROM AUTHOR]
- Published
- 2014
- Full Text
- View/download PDF
579. Stringent Tests of Lorentz Invariance Violation from LHAASO Observations of GRB 221009A.
- Author
-
Cao Z, Aharonian F, Axikegu, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Bian W, Bukevich AV, Cao Q, Cao WY, Cao Z, Chang J, Chang JF, Chen AM, Chen ES, Chen HX, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen S, Chen SH, Chen SZ, Chen TL, Chen Y, Cheng N, Cheng YD, Cui MY, Cui SW, Cui XH, Cui YD, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Dong XQ, Duan KK, Fan JH, Fan YZ, Fang J, Fang JH, Fang K, Feng CF, Feng H, Feng L, Feng SH, Feng XT, Feng Y, Feng YL, Gabici S, Gao B, Gao CD, Gao Q, Gao W, Gao WK, Ge MM, Geng LS, Giacinti G, Gong GH, Gou QB, Gu MH, Guo FL, Guo XL, Guo YQ, Guo YY, Han YA, Hasan M, He HH, He HN, He JY, He Y, Hor YK, Hou BW, Hou C, Hou X, Hu HB, Hu Q, Hu SC, Huang DH, Huang TQ, Huang WJ, Huang XT, Huang XY, Huang Y, Ji XL, Jia HY, Jia K, Jiang K, Jiang XW, Jiang ZJ, Jin M, Kang MM, Karpikov I, Kuleshov D, Kurinov K, Li BB, Li CM, Li C, Li C, Li D, Li F, Li HB, Li HC, Li J, Li J, Li K, Li SD, Li WL, Li WL, Li XR, Li X, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu DB, Liu H, Liu HD, Liu J, Liu JL, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Luo Q, Luo Y, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Min Z, Mitthumsiri W, Mu HJ, Nan YC, Neronov A, Ou LJ, Pattarakijwanich P, Pei ZY, Qi JC, Qi MY, Qiao BQ, Qin JJ, Raza A, Ruffolo D, Sáiz A, Saeed M, Semikoz D, Shao L, Shchegolev O, Sheng XD, Shu FW, Song HC, Stenkin YV, Stepanov V, Su Y, Sun DX, Sun QN, Sun XN, Sun ZB, Takata J, Tam PHT, Tang QW, Tang R, Tang ZB, Tian WW, Wang C, Wang CB, Wang GW, Wang HG, Wang HH, Wang JC, Wang K, Wang K, Wang LP, Wang LY, Wang PH, Wang R, Wang W, Wang XG, Wang XY, Wang Y, Wang YD, Wang YJ, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu QW, Wu S, Wu XF, Wu YS, Xi SQ, Xia J, Xiang GM, Xiao DX, Xiao G, Xin YL, Xing Y, Xiong DR, Xiong Z, Xu DL, Xu RF, Xu RX, Xu WL, Xue L, Yan DH, Yan JZ, Yan T, Yang CW, Yang CY, Yang F, Yang FF, Yang LL, Yang MJ, Yang RZ, Yang WX, Yao YH, Yao ZG, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Yue H, Zeng HD, Zeng TX, Zeng W, Zha M, Zhang BB, Zhang F, Zhang H, Zhang HM, Zhang HY, Zhang JL, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SB, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zhao XH, Zheng F, Zhong WJ, Zhou B, Zhou H, Zhou JN, Zhou M, Zhou P, Zhou R, Zhou XX, Zhou XX, Zhu BY, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zou YC, and Zuo X
- Abstract
On 9 October 2022, the Large High Altitude Air Shower Observatory (LHAASO) reported the observation of the very early TeV afterglow of the brightest-of-all-time gamma-ray burst 221009A, recording the highest photon statistics in the TeV band ever obtained from a gamma-ray burst. We use this unique observation to place stringent constraints on the energy dependence of the speed of light in vacuum, a manifestation of Lorentz invariance violation (LIV) predicted by some quantum gravity (QG) theories. Our results show that the 95% confidence level lower limits on the QG energy scales are E_{QG,1}>10 times the Planck energy E_{Pl} for the linear LIV effect, and E_{QG,2}>6×10^{-8}E_{Pl} for the quadratic LIV effect. Our limits on the quadratic LIV case improve previous best bounds by factors of 5-7.
- Published
- 2024
- Full Text
- View/download PDF
580. Constraints on Ultraheavy Dark Matter Properties from Dwarf Spheroidal Galaxies with LHAASO Observations.
- Author
-
Cao Z, Aharonian F, An Q, Axikegu, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai JT, Cao Q, Cao WY, Cao Z, Chang J, Chang JF, Chen AM, Chen ES, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen Y, Cheng N, Cheng YD, Cui MY, Cui SW, Cui XH, Cui YD, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Della Volpe D, Dong XQ, Duan KK, Fan JH, Fan YZ, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng XT, Feng YL, Gabici S, Gao B, Gao CD, Gao LQ, Gao Q, Gao W, Gao WK, Ge MM, Geng LS, Giacinti G, Gong GH, Gou QB, Gu MH, Guo FL, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JY, He XB, He Y, Heller M, Hor YK, Hou BW, Hou C, Hou X, Hu HB, Hu Q, Hu SC, Huang DH, Huang TQ, Huang WJ, Huang XT, Huang XY, Huang Y, Huang ZC, Ji XL, Jia HY, Jia K, Jiang K, Jiang XW, Jiang ZJ, Jin M, Kang MM, Ke T, Kuleshov D, Kurinov K, Li BB, Li C, Li C, Li D, Li F, Li HB, Li HC, Li HY, Li J, Li J, Li J, Li K, Li WL, Li WL, Li XR, Li X, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Lu R, Luo Q, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Min Z, Mitthumsiri W, Mu HJ, Nan YC, Neronov A, Ou ZW, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Qi YQ, Qiao BQ, Qin JJ, Ruffolo D, Sáiz A, Semikoz D, Shao CY, Shao L, Shchegolev O, Sheng XD, Shu FW, Song HC, Stenkin YV, Stepanov V, Su Y, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang QW, Tang ZB, Tian WW, Wang C, Wang CB, Wang GW, Wang HG, Wang HH, Wang JC, Wang K, Wang LP, Wang LY, Wang PH, Wang R, Wang W, Wang XG, Wang XY, Wang Y, Wang YD, Wang YJ, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu XF, Wu YS, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao DX, Xiao G, Xin GG, Xin YL, Xing Y, Xiong Z, Xu DL, Xu RF, Xu RX, Xu WL, Xue L, Yan DH, Yan JZ, Yan T, Yang CW, Yang F, Yang FF, Yang HW, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Yue H, Zeng HD, Zeng TX, Zeng W, Zha M, Zhang BB, Zhang F, Zhang HM, Zhang HY, Zhang JL, Zhang LX, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SB, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zhou B, Zhou H, Zhou JN, Zhou M, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, and Zuo X
- Abstract
In this Letter we try to search for signals generated by ultraheavy dark matter at the Large High Altitude Air Shower Observatory (LHAASO) data. We look for possible γ rays by dark matter annihilation or decay from 16 dwarf spheroidal galaxies in the field of view of the LHAASO. Dwarf spheroidal galaxies are among the most promising targets for indirect detection of dark matter that have low fluxes of astrophysical γ-ray background while having large amount of dark matter. By analyzing more than 700 days of observational data at LHAASO, no significant dark matter signal from 1 TeV to 1 EeV is detected. Accordingly we derive the most stringent constraints on the ultraheavy dark matter annihilation cross section up to EeV. The constraints on the lifetime of dark matter in decay mode are also derived.
- Published
- 2024
- Full Text
- View/download PDF
581. Measurements of All-Particle Energy Spectrum and Mean Logarithmic Mass of Cosmic Rays from 0.3 to 30 PeV with LHAASO-KM2A.
- Author
-
Cao Z, Aharonian F, Axikegu, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Bian W, Bukevich AV, Cao Q, Cao WY, Cao Z, Chang J, Chang JF, Chen AM, Chen ES, Chen HX, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen S, Chen SH, Chen SZ, Chen TL, Chen Y, Cheng N, Cheng YD, Cui MY, Cui SW, Cui XH, Cui YD, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Dong XQ, Duan KK, Fan JH, Fan YZ, Fang J, Fang JH, Fang K, Feng CF, Feng H, Feng L, Feng SH, Feng XT, Feng Y, Feng YL, Gabici S, Gao B, Gao CD, Gao Q, Gao W, Gao WK, Ge MM, Geng LS, Giacinti G, Gong GH, Gou QB, Gu MH, Guo FL, Guo XL, Guo YQ, Guo YY, Han YA, Hasan M, He HH, He HN, He JY, He Y, Hor YK, Hou BW, Hou C, Hou X, Hu HB, Hu Q, Hu SC, Huang DH, Huang TQ, Huang WJ, Huang XT, Huang XY, Huang Y, Ji XL, Jia HY, Jia K, Jiang K, Jiang XW, Jiang ZJ, Jin M, Kang MM, Karpikov I, Kuleshov D, Kurinov K, Li BB, Li CM, Li C, Li C, Li D, Li F, Li HB, Li HC, Li J, Li J, Li K, Li SD, Li WL, Li WL, Li XR, Li X, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu DB, Liu H, Liu HD, Liu J, Liu JL, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Luo Q, Luo Y, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Min Z, Mitthumsiri W, Mu HJ, Nan YC, Neronov A, Ou LJ, Pattarakijwanich P, Pei ZY, Qi JC, Qi MY, Qiao BQ, Qin JJ, Raza A, Ruffolo D, Sáiz A, Saeed M, Semikoz D, Shao L, Shchegolev O, Sheng XD, Shu FW, Song HC, Stenkin YV, Stepanov V, Su Y, Sun DX, Sun QN, Sun XN, Sun ZB, Takata J, Tam PHT, Tang QW, Tang R, Tang ZB, Tian WW, Wang C, Wang CB, Wang GW, Wang HG, Wang HH, Wang JC, Wang K, Wang K, Wang LP, Wang LY, Wang PH, Wang R, Wang W, Wang XG, Wang XY, Wang Y, Wang YD, Wang YJ, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu QW, Wu S, Wu XF, Wu YS, Xi SQ, Xia J, Xiang GM, Xiao DX, Xiao G, Xin YL, Xing Y, Xiong DR, Xiong Z, Xu DL, Xu RF, Xu RX, Xu WL, Xue L, Yan DH, Yan JZ, Yan T, Yang CW, Yang CY, Yang F, Yang FF, Yang LL, Yang MJ, Yang RZ, Yang WX, Yao YH, Yao ZG, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Yue H, Zeng HD, Zeng TX, Zeng W, Zha M, Zhang BB, Zhang F, Zhang H, Zhang HM, Zhang HY, Zhang JL, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SB, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zhao XH, Zheng F, Zhong WJ, Zhou B, Zhou H, Zhou JN, Zhou M, Zhou P, Zhou R, Zhou XX, Zhou XX, Zhu BY, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zou YC, and Zuo X
- Abstract
We present the measurements of all-particle energy spectrum and mean logarithmic mass of cosmic rays in the energy range of 0.3-30 PeV using data collected from LHAASO-KM2A between September 2021 and December 2022, which is based on a nearly composition-independent energy reconstruction method, achieving unprecedented accuracy. Our analysis reveals the position of the knee at 3.67±0.05±0.15 PeV. Below the knee, the spectral index is found to be -2.7413±0.0004±0.0050, while above the knee, it is -3.128±0.005±0.027, with the sharpness of the transition measured with a statistical error of 2%. The mean logarithmic mass of cosmic rays is almost heavier than helium in the whole measured energy range. It decreases from 1.7 at 0.3 PeV to 1.3 at 3 PeV, representing a 24% decline following a power law with an index of -0.1200±0.0003±0.0341. This is equivalent to an increase in abundance of light components. Above the knee, the mean logarithmic mass exhibits a power law trend towards heavier components, which is reversal to the behavior observed in the all-particle energy spectrum. Additionally, the knee position and the change in power-law index are approximately the same. These findings suggest that the knee observed in the all-particle spectrum corresponds to the knee of the light component, rather than the medium-heavy components.
- Published
- 2024
- Full Text
- View/download PDF
582. Measurement of Ultra-High-Energy Diffuse Gamma-Ray Emission of the Galactic Plane from 10 TeV to 1 PeV with LHAASO-KM2A.
- Author
-
Cao Z, Aharonian F, An Q, Axikegu, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai JT, Cao Q, Cao WY, Cao Z, Chang J, Chang JF, Chen AM, Chen ES, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen Y, Cheng N, Cheng YD, Cui MY, Cui SW, Cui XH, Cui YD, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Della Volpe D, Dong XQ, Duan KK, Fan JH, Fan YZ, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng XT, Feng YL, Gabici S, Gao B, Gao CD, Gao LQ, Gao Q, Gao W, Gao WK, Ge MM, Geng LS, Giacinti G, Gong GH, Gou QB, Gu MH, Guo FL, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JY, He XB, He Y, Heller M, Hor YK, Hou BW, Hou C, Hou X, Hu HB, Hu Q, Hu SC, Huang DH, Huang TQ, Huang WJ, Huang XT, Huang XY, Huang Y, Huang ZC, Ji XL, Jia HY, Jia K, Jiang K, Jiang XW, Jiang ZJ, Jin M, Kang MM, Ke T, Kuleshov D, Kurinov K, Li BB, Li C, Li C, Li D, Li F, Li HB, Li HC, Li HY, Li J, Li J, Li J, Li K, Li WL, Li WL, Li XR, Li X, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Lu R, Luo Q, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Min Z, Mitthumsiri W, Mu HJ, Nan YC, Neronov A, Ou ZW, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Qi YQ, Qiao BQ, Qin JJ, Ruffolo D, Sáiz A, Semikoz D, Shao CY, Shao L, Shchegolev O, Sheng XD, Shu FW, Song HC, Stenkin YV, Stepanov V, Su Y, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang QW, Tang ZB, Tian WW, Wang C, Wang CB, Wang GW, Wang HG, Wang HH, Wang JC, Wang K, Wang LP, Wang LY, Wang PH, Wang R, Wang W, Wang XG, Wang XY, Wang Y, Wang YD, Wang YJ, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu XF, Wu YS, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao DX, Xiao G, Xin GG, Xin YL, Xing Y, Xiong Z, Xu DL, Xu RF, Xu RX, Xu WL, Xue L, Yan DH, Yan JZ, Yan T, Yang CW, Yang F, Yang FF, Yang HW, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Yue H, Zeng HD, Zeng TX, Zeng W, Zha M, Zhang BB, Zhang F, Zhang HM, Zhang HY, Zhang JL, Zhang LX, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SB, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zhou B, Zhou H, Zhou JN, Zhou M, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, and Zuo X
- Abstract
The diffuse Galactic γ-ray emission, mainly produced via interactions between cosmic rays and the interstellar medium and/or radiation field, is a very important probe of the distribution, propagation, and interaction of cosmic rays in the Milky Way. In this Letter, we report the measurements of diffuse γ rays from the Galactic plane between 10 TeV and 1 PeV energies, with the square kilometer array of the Large High Altitude Air Shower Observatory (LHAASO). Diffuse emissions from the inner (15°
10 TeV). The energy spectrum in the inner Galaxy regions can be described by a power-law function with an index of -2.99±0.04, which is different from the curved spectrum as expected from hadronic interactions between locally measured cosmic rays and the line-of-sight integrated gas content. Furthermore, the measured flux is higher by a factor of ∼3 than the prediction. A similar spectrum with an index of -2.99±0.07 is found in the outer Galaxy region, and the absolute flux for 10≲E≲60 TeV is again higher than the prediction for hadronic cosmic ray interactions. The latitude distributions of the diffuse emission are consistent with the gas distribution, while the longitude distributions show clear deviation from the gas distribution. The LHAASO measurements imply that either additional emission sources exist or cosmic ray intensities have spatial variations. - Published
- 2023
- Full Text
- View/download PDF
583. A tera-electron volt afterglow from a narrow jet in an extremely bright gamma-ray burst.
- Author
-
Cao Z, Aharonian F, An Q, Axikegu, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai JT, Cao Q, Cao WY, Cao Z, Chang J, Chang JF, Chen ES, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen Y, Cheng HL, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Della Volpe D, Dong XQ, Duan KK, Fan JH, Fan YZ, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng XT, Feng YL, Gao B, Gao CD, Gao LQ, Gao Q, Gao W, Gao WK, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo FL, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JY, He XB, He Y, Heller M, Hor YK, Hou BW, Hou C, Hou X, Hu HB, Hu Q, Hu SC, Huang DH, Huang TQ, Huang WJ, Huang XT, Huang XY, Huang Y, Huang ZC, Ji XL, Jia HY, Jia K, Jiang K, Jiang XW, Jiang ZJ, Jin M, Kang MM, Ke T, Kuleshov D, Kurinov K, Li BB, Li C, Li C, Li D, Li F, Li HB, Li HC, Li HY, Li J, Li J, Li J, Li K, Li WL, Li WL, Li XR, Li X, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Long WJ, Lu R, Luo Q, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Min Z, Mitthumsiri W, Nan YC, Ou ZW, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Qi YQ, Qiao BQ, Qin JJ, Ruffolo D, Sáiz A, Shao CY, Shao L, Shchegolev O, Sheng XD, Song HC, Stenkin YV, Stepanov V, Su Y, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang C, Wang CB, Wang GW, Wang HG, Wang HH, Wang JC, Wang JS, Wang K, Wang LP, Wang LY, Wang PH, Wang R, Wang W, Wang XG, Wang XY, Wang Y, Wang YD, Wang YJ, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu XF, Wu YS, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao DX, Xiao G, Xin GG, Xin YL, Xing Y, Xiong Z, Xu DL, Xu RF, Xu RX, Xue L, Yan DH, Yan JZ, Yan T, Yang CW, Yang F, Yang FF, Yang HW, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Yue H, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhang B, Zhang BB, Zhang F, Zhang HM, Zhang HY, Zhang JL, Zhang LX, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SB, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng JH, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, and Zuo X
- Abstract
Some gamma-ray bursts (GRBs) have a tera-electron volt (TeV) afterglow, but the early onset of this has not been observed. We report observations with the Large High Altitude Air Shower Observatory (LHAASO) of the bright GRB 221009A, which serendipitously occurred within the instrument's field of view. More than 64,000 photons >0.2 TeV were detected within the first 3000 seconds. The TeV flux began several minutes after the GRB trigger and then rose to a peak ~10 seconds later. This was followed by a decay phase, which became more rapid ~650 seconds after the peak. We interpret the emission using a model of a relativistic jet with half-opening angle of ~0.8°. This is consistent with the core of a structured jet and could explain the high isotropic energy of this GRB.
- Published
- 2023
- Full Text
- View/download PDF
584. Constraints on Heavy Decaying Dark Matter from 570 Days of LHAASO Observations.
- Author
-
Cao Z, Aharonian F, An Q, Axikegu, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai JT, Cao Z, Chang J, Chang JF, Chen ES, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen Y, Cheng HL, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, D'Ettorre Piazzoli B, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Della Volpe D, Duan KK, Fan JH, Fan YZ, Fan ZX, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng XT, Feng YL, Gao B, Gao CD, Gao LQ, Gao Q, Gao W, Gao WK, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo FL, Guo JG, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He SL, He XB, He Y, Heller M, Hor YK, Hou C, Hou X, Hu HB, Hu Q, Hu S, Hu SC, Hu XJ, Huang DH, Huang WH, Huang XT, Huang XY, Huang Y, Huang ZC, Ji XL, Jia HY, Jia K, Jiang K, Jiang ZJ, Jin M, Kang MM, Ke T, Kuleshov D, Levochkin K, Li BB, Li C, Li C, Li F, Li HB, Li HC, Li HY, Li J, Li J, Li J, Li K, Li WL, Li XR, Li X, Li X, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Long WJ, Lu R, Luo Q, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Masood A, Min Z, Mitthumsiri W, Nan YC, Ou ZW, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Qi YQ, Qiao BQ, Qin JJ, Ruffolo D, Sáiz A, Shao CY, Shao L, Shchegolev O, Sheng XD, Shi JY, Song HC, Stenkin YV, Stepanov V, Su Y, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang BD, Wang C, Wang H, Wang HG, Wang JC, Wang JS, Wang LP, Wang LY, Wang R, Wang RN, Wang W, Wang XG, Wang XY, Wang Y, Wang YD, Wang YJ, Wang YP, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu XF, Wu YS, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao DX, Xiao G, Xin GG, Xin YL, Xing Y, Xiong Z, Xu DL, Xu RX, Xue L, Yan DH, Yan JZ, Yang CW, Yang FF, Yang HW, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Yue H, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhai XX, Zhang BB, Zhang F, Zhang HM, Zhang HY, Zhang JL, Zhang LX, Zhang L, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SB, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang YL, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng Y, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zuo X, Ando S, Chianese M, Fiorillo DFG, Miele G, and Ng KCY
- Abstract
The kilometer square array (KM2A) of the large high altitude air shower observatory (LHAASO) aims at surveying the northern γ-ray sky at energies above 10 TeV with unprecedented sensitivity. γ-ray observations have long been one of the most powerful tools for dark matter searches, as, e.g., high-energy γ rays could be produced by the decays of heavy dark matter particles. In this Letter, we present the first dark matter analysis with LHAASO-KM2A, using the first 340 days of data from 1/2-KM2A and 230 days of data from 3/4-KM2A. Several regions of interest are used to search for a signal and account for the residual cosmic-ray background after γ/hadron separation. We find no excess of dark matter signals, and thus place some of the strongest γ-ray constraints on the lifetime of heavy dark matter particles with mass between 10^{5} and 10^{9} GeV. Our results with LHAASO are robust, and have important implications for dark matter interpretations of the diffuse astrophysical high-energy neutrino emission.
- Published
- 2022
- Full Text
- View/download PDF
585. Exploring Lorentz Invariance Violation from Ultrahigh-Energy γ Rays Observed by LHAASO.
- Author
-
Cao Z, Aharonian F, An Q, Axikegu, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai H, Cai JT, Cao Z, Chang J, Chang JF, Chen BM, Chen ES, Chen J, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen XL, Chen Y, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, Piazzoli BD, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Della Volpe D, Dong XJ, Duan KK, Fan JH, Fan YZ, Fan ZX, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng YL, Gao B, Gao CD, Gao LQ, Gao Q, Gao W, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo FL, Guo JG, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JC, He SL, He XB, He Y, Heller M, Hor YK, Hou C, Hou X, Hu HB, Hu S, Hu SC, Hu XJ, Huang DH, Huang QL, Huang WH, Huang XT, Huang XY, Huang ZC, Ji F, Ji XL, Jia HY, Jiang K, Jiang ZJ, Jin C, Ke T, Kuleshov D, Levochkin K, Li BB, Li C, Li C, Li F, Li HB, Li HC, Li HY, Li J, Li J, Li K, Li WL, Li XR, Li X, Li X, Li Y, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Liu ZX, Long WJ, Lu R, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Masood A, Min Z, Mitthumsiri W, Montaruli T, Nan YC, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Qi YQ, Qiao BQ, Qin JJ, Ruffolo D, Rulev V, Sáiz A, Shao L, Shchegolev O, Sheng XD, Shi JR, Song HC, Stenkin YV, Stepanov V, Su Y, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang BD, Wang C, Wang H, Wang HG, Wang JC, Wang JS, Wang LP, Wang LY, Wang RN, Wang W, Wang W, Wang XG, Wang XJ, Wang XY, Wang Y, Wang YD, Wang YJ, Wang YP, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu WX, Wu XF, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao DX, Xiao G, Xiao HB, Xin GG, Xin YL, Xing Y, Xu DL, Xu RX, Xue L, Yan DH, Yan JZ, Yang CW, Yang FF, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhai XX, Zhang BB, Zhang HM, Zhang HY, Zhang JL, Zhang JW, Zhang LX, Zhang L, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang YL, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng Y, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, and Zuo X
- Abstract
Recently, the LHAASO Collaboration published the detection of 12 ultrahigh-energy γ-ray sources above 100 TeV, with the highest energy photon reaching 1.4 PeV. The first detection of PeV γ rays from astrophysical sources may provide a very sensitive probe of the effect of the Lorentz invariance violation (LIV), which results in decay of high-energy γ rays in the superluminal scenario and hence a sharp cutoff of the energy spectrum. Two highest energy sources are studied in this work. No signature of the existence of the LIV is found in their energy spectra, and the lower limits on the LIV energy scale are derived. Our results show that the first-order LIV energy scale should be higher than about 10^{5} times the Planck scale M_{Pl} and that the second-order LIV scale is >10^{-3}M_{Pl}. Both limits improve by at least one order of magnitude the previous results.
- Published
- 2022
- Full Text
- View/download PDF
586. Peta-electron volt gamma-ray emission from the Crab Nebula.
- Author
-
Cao Z, Aharonian F, An Q, Axikegu, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai H, Cai JT, Cao Z, Chang J, Chang JF, Chen BM, Chen ES, Chen J, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen XL, Chen Y, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, D'Ettorre Piazzoli B, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Della Volpe D, Dong XJ, Duan KK, Fan JH, Fan YZ, Fan ZX, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng YL, Gao B, Gao CD, Gao LQ, Gao Q, Gao W, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo FL, Guo JG, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JC, He SL, He XB, He Y, Heller M, Hor YK, Hou C, Hou X, Hu HB, Hu S, Hu SC, Hu XJ, Huang DH, Huang QL, Huang WH, Huang XT, Huang XY, Huang ZC, Ji F, Ji XL, Jia HY, Jiang K, Jiang ZJ, Jin C, Ke T, Kuleshov D, Levochkin K, Li BB, Li C, Li C, Li F, Li HB, Li HC, Li HY, Li J, Li J, Li K, Li WL, Li XR, Li X, Li X, Li Y, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu Y, Liu YN, Liu ZX, Long WJ, Lu R, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Masood A, Min Z, Mitthumsiri W, Montaruli T, Nan YC, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Qi YQ, Qiao BQ, Qin JJ, Ruffolo D, Rulev V, Saiz A, Shao L, Shchegolev O, Sheng XD, Shi JY, Song HC, Stenkin YV, Stepanov V, Su Y, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang BD, Wang C, Wang H, Wang HG, Wang JC, Wang JS, Wang LP, Wang LY, Wang RN, Wang W, Wang W, Wang XG, Wang XJ, Wang XY, Wang Y, Wang YD, Wang YJ, Wang YP, Wang ZH, Wang ZX, Wang Z, Wang Z, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu WX, Wu XF, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao DX, Xiao G, Xiao HB, Xin GG, Xin YL, Xing Y, Xu DL, Xu RX, Xue L, Yan DH, Yan JZ, Yang CW, Yang FF, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhai XX, Zhang BB, Zhang HM, Zhang HY, Zhang JL, Zhang JW, Zhang LX, Zhang L, Zhang L, Zhang PF, Zhang PP, Zhang R, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang YF, Zhang YL, Zhang Y, Zhang Y, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng Y, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, and Zuo X
- Abstract
The Crab Nebula is a bright source of gamma rays powered by the Crab Pulsar's rotational energy through the formation and termination of a relativistic electron-positron wind. We report the detection of gamma rays from this source with energies from 5 × 10
-4 to 1.1 peta-electron volts with a spectrum showing gradual steepening over three energy decades. The ultrahigh-energy photons imply the presence of a peta-electron volt electron accelerator (a pevatron) in the nebula, with an acceleration rate exceeding 15% of the theoretical limit. We constrain the pevatron's size between 0.025 and 0.1 parsecs and the magnetic field to ≈110 microgauss. The production rate of peta-electron volt electrons, 2.5 × 1036 ergs per second, constitutes 0.5% of the pulsar spin-down luminosity, although we cannot exclude a contribution of peta-electron volt protons to the production of the highest-energy gamma rays., (Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)- Published
- 2021
- Full Text
- View/download PDF
587. Extended Very-High-Energy Gamma-Ray Emission Surrounding PSR J0622+3749 Observed by LHAASO-KM2A.
- Author
-
Aharonian F, An Q, Axikegu, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai H, Cai JT, Cao Z, Cao Z, Chang J, Chang JF, Chang XC, Chen BM, Chen J, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen XL, Chen Y, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Della Volpe D, D'Ettorre Piazzoli B, Dong XJ, Fan JH, Fan YZ, Fan ZX, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng YL, Gao B, Gao CD, Gao Q, Gao W, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo JG, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JC, He SL, He XB, He Y, Heller M, Hor YK, Hou C, Hou X, Hu HB, Hu S, Hu SC, Hu XJ, Huang DH, Huang QL, Huang WH, Huang XT, Huang ZC, Ji F, Ji XL, Jia HY, Jiang K, Jiang ZJ, Jin C, Kuleshov D, Levochkin K, Li BB, Li C, Li C, Li F, Li HB, Li HC, Li HY, Li J, Li K, Li WL, Li X, Li X, Li XR, Li Y, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu YN, Liu ZX, Long WJ, Lu R, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Masood A, Mitthumsiri W, Montaruli T, Nan YC, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Ruffolo D, Rulev V, Sáiz A, Shao L, Shchegolev O, Sheng XD, Shi JR, Song HC, Stenkin YV, Stepanov V, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang BD, Wang C, Wang H, Wang HG, Wang JC, Wang JS, Wang LP, Wang LY, Wang RN, Wang W, Wang W, Wang XG, Wang XJ, Wang XY, Wang YD, Wang YJ, Wang YP, Wang Z, Wang Z, Wang ZH, Wang ZX, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu WX, Wu XF, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao G, Xiao HB, Xin GG, Xin YL, Xing Y, Xu DL, Xu RX, Xue L, Yan DH, Yang CW, Yang FF, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhai XX, Zhang BB, Zhang HM, Zhang HY, Zhang JL, Zhang JW, Zhang L, Zhang L, Zhang LX, Zhang PF, Zhang PP, Zhang R, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang Y, Zhang Y, Zhang YF, Zhang YL, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng Y, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, Zuo X, and Huang XY
- Abstract
We report the discovery of an extended very-high-energy (VHE) gamma-ray source around the location of the middle-aged (207.8 kyr) pulsar PSR J0622+3749 with the Large High-Altitude Air Shower Observatory (LHAASO). The source is detected with a significance of 8.2σ for E>25 TeV assuming a Gaussian template. The best-fit location is (right ascension, declination) =(95.47°±0.11°,37.92°±0.09°), and the extension is 0.40°±0.07°. The energy spectrum can be described by a power-law spectrum with an index of -2.92±0.17_{stat}±0.02_{sys}. No clear extended multiwavelength counterpart of the LHAASO source has been found from the radio to sub-TeV bands. The LHAASO observations are consistent with the scenario that VHE electrons escaped from the pulsar, diffused in the interstellar medium, and scattered the interstellar radiation field. If interpreted as the pulsar halo scenario, the diffusion coefficient, inferred for electrons with median energies of ∼160 TeV, is consistent with those obtained from the extended halos around Geminga and Monogem and much smaller than that derived from cosmic ray secondaries. The LHAASO discovery of this source thus likely enriches the class of so-called pulsar halos and confirms that high-energy particles generally diffuse very slowly in the disturbed medium around pulsars.
- Published
- 2021
- Full Text
- View/download PDF
588. Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources.
- Author
-
Cao Z, Aharonian FA, An Q, Axikegu, Bai LX, Bai YX, Bao YW, Bastieri D, Bi XJ, Bi YJ, Cai H, Cai JT, Cao Z, Chang J, Chang JF, Chang XC, Chen BM, Chen J, Chen L, Chen L, Chen L, Chen MJ, Chen ML, Chen QH, Chen SH, Chen SZ, Chen TL, Chen XL, Chen Y, Cheng N, Cheng YD, Cui SW, Cui XH, Cui YD, Dai BZ, Dai HL, Dai ZG, Danzengluobu, Della Volpe D, D Ettorre Piazzoli B, Dong XJ, Fan JH, Fan YZ, Fan ZX, Fang J, Fang K, Feng CF, Feng L, Feng SH, Feng YL, Gao B, Gao CD, Gao Q, Gao W, Ge MM, Geng LS, Gong GH, Gou QB, Gu MH, Guo JG, Guo XL, Guo YQ, Guo YY, Han YA, He HH, He HN, He JC, He SL, He XB, He Y, Heller M, Hor YK, Hou C, Hou X, Hu HB, Hu S, Hu SC, Hu XJ, Huang DH, Huang QL, Huang WH, Huang XT, Huang ZC, Ji F, Ji XL, Jia HY, Jiang K, Jiang ZJ, Jin C, Kuleshov D, Levochkin K, Li BB, Li C, Li C, Li F, Li HB, Li HC, Li HY, Li J, Li K, Li WL, Li X, Li X, Li XR, Li Y, Li YZ, Li Z, Li Z, Liang EW, Liang YF, Lin SJ, Liu B, Liu C, Liu D, Liu H, Liu HD, Liu J, Liu JL, Liu JS, Liu JY, Liu MY, Liu RY, Liu SM, Liu W, Liu YN, Liu ZX, Long WJ, Lu R, Lv HK, Ma BQ, Ma LL, Ma XH, Mao JR, Masood A, Mitthumsiri W, Montaruli T, Nan YC, Pang BY, Pattarakijwanich P, Pei ZY, Qi MY, Ruffolo D, Rulev V, Sáiz A, Shao L, Shchegolev O, Sheng XD, Shi JR, Song HC, Stenkin YV, Stepanov V, Sun QN, Sun XN, Sun ZB, Tam PHT, Tang ZB, Tian WW, Wang BD, Wang C, Wang H, Wang HG, Wang JC, Wang JS, Wang LP, Wang LY, Wang RN, Wang W, Wang W, Wang XG, Wang XJ, Wang XY, Wang YD, Wang YJ, Wang YP, Wang Z, Wang Z, Wang ZH, Wang ZX, Wei DM, Wei JJ, Wei YJ, Wen T, Wu CY, Wu HR, Wu S, Wu WX, Wu XF, Xi SQ, Xia J, Xia JJ, Xiang GM, Xiao G, Xiao HB, Xin GG, Xin YL, Xing Y, Xu DL, Xu RX, Xue L, Yan DH, Yang CW, Yang FF, Yang JY, Yang LL, Yang MJ, Yang RZ, Yang SB, Yao YH, Yao ZG, Ye YM, Yin LQ, Yin N, You XH, You ZY, Yu YH, Yuan Q, Zeng HD, Zeng TX, Zeng W, Zeng ZK, Zha M, Zhai XX, Zhang BB, Zhang HM, Zhang HY, Zhang JL, Zhang JW, Zhang L, Zhang L, Zhang LX, Zhang PF, Zhang PP, Zhang R, Zhang SR, Zhang SS, Zhang X, Zhang XP, Zhang Y, Zhang Y, Zhang YF, Zhang YL, Zhao B, Zhao J, Zhao L, Zhao LZ, Zhao SP, Zheng F, Zheng Y, Zhou B, Zhou H, Zhou JN, Zhou P, Zhou R, Zhou XX, Zhu CG, Zhu FR, Zhu H, Zhu KJ, and Zuo X
- Abstract
The extension of the cosmic-ray spectrum beyond 1 petaelectronvolt (PeV; 10
15 electronvolts) indicates the existence of the so-called PeVatrons-cosmic-ray factories that accelerate particles to PeV energies. We need to locate and identify such objects to find the origin of Galactic cosmic rays1 . The principal signature of both electron and proton PeVatrons is ultrahigh-energy (exceeding 100 TeV) γ radiation. Evidence of the presence of a proton PeVatron has been found in the Galactic Centre, according to the detection of a hard-spectrum radiation extending to 0.04 PeV (ref.2 ). Although γ-rays with energies slightly higher than 0.1 PeV have been reported from a few objects in the Galactic plane3-6 , unbiased identification and in-depth exploration of PeVatrons requires detection of γ-rays with energies well above 0.1 PeV. Here we report the detection of more than 530 photons at energies above 100 teraelectronvolts and up to 1.4 PeV from 12 ultrahigh-energy γ-ray sources with a statistical significance greater than seven standard deviations. Despite having several potential counterparts in their proximity, including pulsar wind nebulae, supernova remnants and star-forming regions, the PeVatrons responsible for the ultrahigh-energy γ-rays have not yet been firmly localized and identified (except for the Crab Nebula), leaving open the origin of these extreme accelerators.- Published
- 2021
- Full Text
- View/download PDF
589. Detection of gamma rays from a starburst galaxy.
- Author
-
Acero F, Aharonian F, Akhperjanian AG, Anton G, Barres de Almeida U, Bazer-Bachi AR, Becherini Y, Behera B, Bernlöhr K, Bochow A, Boisson C, Bolmont J, Borrel V, Brucker J, Brun F, Brun P, Bühler R, Bulik T, Büsching I, Boutelier T, Chadwick PM, Charbonnier A, Chaves RC, Cheesebrough A, Chounet LM, Clapson AC, Coignet G, Dalton M, Daniel MK, Davids ID, Degrange B, Deil C, Dickinson HJ, Djannati-Ataï A, Domainko W, Drury LO, Dubois F, Dubus G, Dyks J, Dyrda M, Egberts K, Emmanoulopoulos D, Espigat P, Farnier C, Fegan S, Feinstein F, Fiasson A, Förster A, Fontaine G, Füssling M, Gabici S, Gallant YA, Gérard L, Gerbig D, Giebels B, Glicenstein JF, Glück B, Goret P, Göring D, Hauser D, Hauser M, Heinz S, Heinzelmann G, Henri G, Hermann G, Hinton JA, Hoffmann A, Hofmann W, Hofverberg P, Hoppe S, Horns D, Jacholkowska A, de Jager OC, Jahn C, Jung I, Katarzyński K, Katz U, Kaufmann S, Kerschhaggl M, Khangulyan D, Khélifi B, Keogh D, Klochkov D, Kluźniak W, Kneiske T, Komin N, Kosack K, Kossakowski R, Lamanna G, Lenain JP, Lohse T, Marandon V, Martineau-Huynh O, Marcowith A, Masbou J, Maurin D, McComb TJ, Medina MC, Méhault J, Moderski R, Moulin E, Naumann-Godo M, de Naurois M, Nedbal D, Nekrassov D, Nicholas B, Niemiec J, Nolan SJ, Ohm S, Olive JF, de Oña Wilhelmi E, Orford KJ, Ostrowski M, Panter M, Paz Arribas M, Pedaletti G, Pelletier G, Petrucci PO, Pita S, Pühlhofer G, Punch M, Quirrenbach A, Raubenheimer BC, Raue M, Rayner SM, Reimer O, Renaud M, Rieger F, Ripken J, Rob L, Rosier-Lees S, Rowell G, Rudak B, Rulten CB, Ruppel J, Sahakian V, Santangelo A, Schlickeiser R, Schöck FM, Schwanke U, Schwarzburg S, Schwemmer S, Shalchi A, Sikora M, Skilton JL, Sol H, Stawarz Ł, Steenkamp R, Stegmann C, Stinzing F, Superina G, Szostek A, Tam PH, Tavernet JP, Terrier R, Tibolla O, Tluczykont M, van Eldik C, Vasileiadis G, Venter C, Venter L, Vialle JP, Vincent P, Vivier M, Völk HJ, Volpe F, Wagner SJ, Ward M, Zdziarski AA, and Zech A
- Abstract
Starburst galaxies exhibit in their central regions a highly increased rate of supernovae, the remnants of which are thought to accelerate energetic cosmic rays up to energies of approximately 10(15) electron volts. We report the detection of gamma rays--tracers of such cosmic rays--from the starburst galaxy NGC 253 using the High Energy Stereoscopic System (H.E.S.S.) array of imaging atmospheric Cherenkov telescopes. The gamma-ray flux above 220 billion electron volts is F = (5.5 +/- 1.0(stat) +/- 2.8(sys)) x 10(-13) cm(-2) s(-1), implying a cosmic-ray density about three orders of magnitude larger than that in the center of the Milky Way. The fraction of cosmic-ray energy channeled into gamma rays in this starburst environment is five times as large as that in our Galaxy.
- Published
- 2009
- Full Text
- View/download PDF
590. Radio imaging of the very-high-energy gamma-ray emission region in the central engine of a radio galaxy.
- Author
-
Acciari VA, Aliu E, Arlen T, Bautista M, Beilicke M, Benbow W, Bradbury SM, Buckley JH, Bugaev V, Butt Y, Byrum K, Cannon A, Celik O, Cesarini A, Chow YC, Ciupik L, Cogan P, Cui W, Dickherber R, Fegan SJ, Finley JP, Fortin P, Fortson L, Furniss A, Gall D, Gillanders GH, Grube J, Guenette R, Gyuk G, Hanna D, Holder J, Horan D, Hui CM, Humensky TB, Imran A, Kaaret P, Karlsson N, Kieda D, Kildea J, Konopelko A, Krawczynski H, Krennrich F, Lang MJ, LeBohec S, Maier G, McCann A, McCutcheon M, Millis J, Moriarty P, Ong RA, Otte AN, Pandel D, Perkins JS, Petry D, Pohl M, Quinn J, Ragan K, Reyes LC, Reynolds PT, Roache E, Roache E, Rose HJ, Schroedter M, Sembroski GH, Smith AW, Swordy SP, Theiling M, Toner JA, Varlotta A, Vincent S, Wakely SP, Ward JE, Weekes TC, Weinstein A, Williams DA, Wissel S, Wood M, Walker RC, Davies F, Hardee PE, Junor W, Ly C, Aharonian F, Akhperjanian AG, Anton G, Barres de Almeida U, Bazer-Bachi AR, Becherini Y, Behera B, Bernlöhr K, Bochow A, Boisson C, Bolmont J, Borrel V, Brucker J, Brun F, Brun P, Bühler R, Bulik T, Büsching I, Boutelier T, Chadwick PM, Charbonnier A, Chaves RC, Cheesebrough A, Chounet LM, Clapson AC, Coignet G, Dalton M, Daniel MK, Davids ID, Degrange B, Deil C, Dickinson HJ, Djannati-Ataï A, Domainko W, Drury LO, Dubois F, Dubus G, Dyks J, Dyrda M, Egberts K, Emmanoulopoulos D, Espigat P, Farnier C, Feinstein F, Fiasson A, Förster A, Fontaine G, Füssling M, Gabici S, Gallant YA, Gérard L, Gerbig D, Giebels B, Glicenstein JF, Glück B, Goret P, Göhring D, Hauser D, Hauser M, Heinz S, Heinzelmann G, Henri G, Hermann G, Hinton JA, Hoffmann A, Hofmann W, Holleran M, Hoppe S, Horns D, Jacholkowska A, de Jager OC, Jahn C, Jung I, Katarzyński K, Katz U, Kaufmann S, Kendziorra E, Kerschhaggl M, Khangulyan D, Khélifi B, Keogh D, Kluźniak W, Kneiske T, Komin N, Kosack K, Lamanna G, Lenain JP, Lohse T, Marandon V, Martin JM, Martineau-Huynh O, Marcowith A, Maurin D, McComb TJ, Medina MC, Moderski R, Moulin E, Naumann-Godo M, de Naurois M, Nedbal D, Nekrassov D, Nicholas B, Niemiec J, Nolan SJ, Ohm S, Olive JF, de Oña Wilhelmi E, Orford KJ, Ostrowski M, Panter M, Paz Arribas M, Pedaletti G, Pelletier G, Petrucci PO, Pita S, Pühlhofer G, Punch M, Quirrenbach A, Raubenheimer BC, Raue M, Rayner SM, Renaud M, Rieger F, Ripken J, Rob L, Rosier-Lees S, Rowell G, Rudak B, Rulten CB, Ruppel J, Sahakian V, Santangelo A, Schlickeiser R, Schöck FM, Schröder R, Schwanke U, Schwarzburg S, Schwemmer S, Shalchi A, Sikora M, Skilton JL, Sol H, Spangler D, Stawarz Ł, Steenkamp R, Stegmann C, Stinzing F, Superina G, Szostek A, Tam PH, Tavernet JP, Terrier R, Tibolla O, Tluczykont M, van Eldik C, Vasileiadis G, Venter C, Venter L, Vialle JP, Vincent P, Vivier M, Völk HJ, Volpe F, Wagner SJ, Ward M, Zdziarski AA, Zech A, Anderhub H, Antonelli LA, Antoranz P, Backes M, Baixeras C, Balestra S, Barrio JA, Bastieri D, Becerra González J, Becker JK, Bednarek W, Berger K, Bernardini E, Biland A, Bock RK, Bonnoli G, Bordas P, Borla Tridon D, Bosch-Ramon V, Bose D, Braun I, Bretz T, Britvitch I, Camara M, Carmona E, Commichau S, Contreras JL, Cortina J, Costado MT, Covino S, Curtef V, Dazzi F, De Angelis A, De Cea del Pozo E, Delgado Mendez C, De los Reyes R, De Lotto B, De Maria M, De Sabata F, Dominguez A, Dorner D, Doro M, Elsaesser D, Errando M, Ferenc D, Fernández E, Firpo R, Fonseca MV, Font L, Galante N, García López RJ, Garczarczyk M, Gaug M, Goebel F, Hadasch D, Hayashida M, Herrero A, Hildebrand D, Höhne-Mönch D, Hose J, Hsu CC, Jogler T, Kranich D, La Barbera A, Laille A, Leonardo E, Lindfors E, Lombardi S, Longo F, López M, Lorenz E, Majumdar P, Maneva G, Mankuzhiyil N, Mannheim K, Maraschi L, Mariotti M, Martínez M, Mazin D, Meucci M, Miranda JM, Mirzoyan R, Miyamoto H, Moldón J, Moles M, Moralejo A, Nieto D, Nilsson K, Ninkovic J, Oya I, Paoletti R, Paredes JM, Pasanen M, Pascoli D, Pauss F, Pegna RG, Perez-Torres MA, Persic M, Peruzzo L, Prada F, Prandini E, Puchades N, Reichardt I, Rhode W, Ribó M, Rico J, Rissi M, Robert A, Rügamer S, Saggion A, Saito TY, Salvati M, Sanchez-Conde M, Satalecka K, Scalzotto V, Scapin V, Schweizer T, Shayduk M, Shore SN, Sidro N, Sierpowska-Bartosik A, Sillanpää A, Sitarek J, Sobczynska D, Spanier F, Stamerra A, Stark LS, Takalo L, Tavecchio F, Temnikov P, Tescaro D, Teshima M, Torres DF, Turini N, Vankov H, Wagner RM, Zabalza V, Zandanel F, Zanin R, and Zapatero J
- Abstract
The accretion of matter onto a massive black hole is believed to feed the relativistic plasma jets found in many active galactic nuclei (AGN). Although some AGN accelerate particles to energies exceeding 10(12) electron volts and are bright sources of very-high-energy (VHE) gamma-ray emission, it is not yet known where the VHE emission originates. Here we report on radio and VHE observations of the radio galaxy Messier 87, revealing a period of extremely strong VHE gamma-ray flares accompanied by a strong increase of the radio flux from its nucleus. These results imply that charged particles are accelerated to very high energies in the immediate vicinity of the black hole.
- Published
- 2009
- Full Text
- View/download PDF
591. Fast variability of tera-electron volt gamma rays from the radio galaxy M87.
- Author
-
Aharonian F, Akhperjanian AG, Bazer-Bachi AR, Beilicke M, Benbow W, Berge D, Bernlöhr K, Boisson C, Bolz O, Borrel V, Braun I, Brown AM, Bühler R, Büsching I, Carrigan S, Chadwick PM, Chounet LM, Coignet G, Cornils R, Costamante L, Degrange B, Dickinson HJ, Djannati-Ataï A, Drury LO, Dubus G, Egberts K, Emmanoulopoulos D, Espigat P, Feinstein F, Ferrero E, Fiasson A, Fontaine G, Funk S, Funk S, Füssling M, Gallant YA, Giebels B, Glicenstein JF, Goret P, Hadjichristidis C, Hauser D, Hauser M, Heinzelmann G, Henri G, Hermann G, Hinton JA, Hoffmann A, Hofmann W, Holleran M, Hoppe S, Horns D, Jacholkowska A, de Jager OC, Kendziorra E, Kerschhaggl M, Khélifi B, Komin N, Konopelko A, Kosack K, Lamanna G, Latham IJ, Le Gallou R, Lemière A, Lemoine-Goumard M, Lenain JP, Lohse T, Martin JM, Martineau-Huynh O, Marcowith A, Masterson C, Maurin G, McComb TJ, Moulin E, de Naurois M, Nedbal D, Nolan SJ, Noutsos A, Orford KJ, Osborne JL, Ouchrif M, Panter M, Pelletier G, Pita S, Pühlhofer G, Punch M, Ranchon S, Raubenheimer BC, Raue M, Rayner SM, Reimer A, Ripken J, Rob L, Rolland L, Rosier-Lees S, Rowell G, Sahakian V, Santangelo A, Saugé L, Schlenker S, Schlickeiser R, Schröder R, Schwanke U, Schwarzburg S, Schwemmer S, Shalchi A, Sol H, Spangler D, Spanier F, Steenkamp R, Stegmann C, Superina G, Tam PH, Tavernet JP, Terrier R, Tluczykont M, van Eldik C, Vasileiadis G, Venter C, Vialle JP, Vincent P, Völk HJ, Wagner SJ, and Ward M
- Abstract
The detection of fast variations of the tera-electron volt (TeV) (10(12) eV) gamma-ray flux, on time scales of days, from the nearby radio galaxy M87 is reported. These variations are about 10 times as fast as those observed in any other wave band and imply a very compact emission region with a dimension similar to the Schwarzschild radius of the central black hole. We thus can exclude several other sites and processes of the gamma-ray production. The observations confirm that TeV gamma rays are emitted by extragalactic sources other than blazars, where jets are not relativistically beamed toward the observer.
- Published
- 2006
- Full Text
- View/download PDF
592. Mitral and aortic valvular disease in elderly.
- Author
-
Tam PH
- Subjects
- Age Factors, Aged, Aortic Valve Insufficiency diagnosis, Atrial Fibrillation diagnosis, Female, Humans, Male, Mitral Valve Insufficiency diagnosis, Tricuspid Valve Insufficiency diagnosis, Aortic Valve, Heart Valve Diseases diagnosis, Mitral Valve
- Published
- 1979
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.