369 results on '"Iterative closest point algorithm"'
Search Results
352. Convergent Iterative Closest-Point Algorithm to Accomodate Anisotropic and Inhomogenous Localization Error.
- Author
-
Maier-Hein, Lena, Franz, Alfred Michael, dos Santos, Thiago R., Schmidt, Mirko, Fangerau, Markus, Meinzer, Hans-Peter, and Fitzpatrick, J. Michael
- Subjects
- *
STOCHASTIC convergence , *ITERATIVE methods (Mathematics) , *ALGORITHMS , *ANISOTROPY , *GEOMETRIC analysis , *MATHEMATICAL transformations , *RANDOM noise theory - Abstract
Since its introduction in the early 1990s, the Iterative Closest Point (ICP) algorithm has become one of the most well-known methods for geometric alignment of 3D models. Given two roughly aligned shapes represented by two point sets, the algorithm iteratively establishes point correspondences given the current alignment of the data and computes a rigid transformation accordingly. From a statistical point of view, however, it implicitly assumes that the points are observed with isotropic Gaussian noise. In this paper, we show that this assumption may lead to errors and generalize the ICP such that it can account for anisotropic and inhomogenous localization errors. We 1) provide a formal description of the algorithm, 2) extend it to registration of partially overlapping surfaces, 3) prove its convergence, 4) derive the required covariance matrices for a set of selected applications, and 5) present means for optimizing the runtime. An evaluation on publicly available surface meshes as well as on a set of meshes extracted from medical imaging data shows a dramatic increase in accuracy compared to the original ICP, especially in the case of partial surface registration. As point-based surface registration is a central component in various applications, the potential impact of the proposed method is high. [ABSTRACT FROM PUBLISHER]
- Published
- 2012
- Full Text
- View/download PDF
353. Intracranial Pressure Signal Morphology: Real-Time Tracking.
- Author
-
Scalzo, Fabien, Bergsneider, Marvin, Vespa, Paul, Martin, Neil, and Hu, Xiao
- Subjects
INTRACRANIAL pressure ,BRAIN diseases ,CEREBROVASCULAR disease ,BRAIN injuries ,BAYESIAN analysis - Abstract
The waveform morphology of intracranial pressure (ICP) pulses holds essential information about intracranial and cerebrovascular pathophysiologies. Automatic analysis of the ICP waveforms may help to predict abnormal increase of ICP and thus prevent severe complications in patients treated for traumatic brain injuries (TBIs). This article describes a probabilistic framework to track the ICP waveform morphology in real time. The model represents the correlation between different ICP morphological metrics extracted within a single pulse as well as the temporal dependence of metrics extracted between successive pulses. Morphological tracking is solved using Bayesian inference in a dynamic graphical model that associates a random variable to each morphological metric. [ABSTRACT FROM PUBLISHER]
- Published
- 2012
- Full Text
- View/download PDF
354. Robust Point Set Registration Using Gaussian Mixture Models.
- Author
-
Jian, Bing and Vemuri, Baba C.
- Subjects
- *
IMAGE registration , *ROBUST control , *KERNEL functions , *ITERATIVE methods (Mathematics) , *ALGORITHMS , *STATISTICAL correlation , *PATTERN perception , *MAXIMUM likelihood statistics , *GAUSSIAN processes , *OUTLIERS (Statistics) - Abstract
In this paper, we present a unified framework for the rigid and nonrigid point set registration problem in the presence of significant amounts of noise and outliers. The key idea of this registration framework is to represent the input point sets using Gaussian mixture models. Then, the problem of point set registration is reformulated as the problem of aligning two Gaussian mixtures such that a statistical discrepancy measure between the two corresponding mixtures is minimized. We show that the popular iterative closest point (ICP) method [1] and several existing point set registration methods [2], [3], [4], [5], [6], [7] in the field are closely related and can be reinterpreted meaningfully in our general framework. Our instantiation of this general framework is based on the the L2 distance between two Gaussian mixtures, which has the closed-form expression and in turn leads to a computationally efficient registration algorithm. The resulting registration algorithm exhibits inherent statistical robustness, has an intuitive interpretation, and is simple to implement. We also provide theoretical and experimental comparisons with other robust methods for point set registration. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
355. Approximately Global Optimization for Robust Alignment of Generalized Shapes.
- Author
-
Li, Hongsheng, Shen, Tian, and Huang, Xiaolei
- Subjects
- *
PARTICLE swarm optimization , *ROBUST control , *GAUSSIAN processes , *INFORMATION asymmetry , *MATHEMATICAL mappings , *ALGORITHMS , *COMPARATIVE studies , *ITERATIVE methods (Mathematics) - Abstract
In this paper, we introduce a novel method to solve shape alignment problems. We use gray-scale "images” to represent source shapes, and propose a novel two-component Gaussian Mixture (GM) distance map representation for target shapes. This asymmetric representation is a flexible image-based representation which is able to represent different kinds of shape data, including continuous contours, unstructured sparse point sets, edge maps, and even gray-scale gradient maps. Using this representation, a new energy function based on a novel two-component Gaussian Mixture distance model is proposed. The new energy function was empirically evaluated to be a more robust shape dissimilarity metric that can be computed efficiently. Such high efficiency is essential for global optimization methods. We adopt and modify one of them, the Particle Swarm Optimization (PSO), to effectively estimate the global optimum of the new energy function. Differently from the original PSO, several new strategies were employed to make the optimization more robust and prevent it from converging prematurely. The overall performance of the proposed framework as well as the properties of each algorithmic component were evaluated and compared with those of some state-of-the-art methods. Extensive experiments and comparison performed on generalized 2D and 3D shape data demonstrate the robustness and effectiveness of the method. [ABSTRACT FROM PUBLISHER]
- Published
- 2011
- Full Text
- View/download PDF
356. Penalizing Closest Point Sharing for Automatic Free Form Shape Registration.
- Author
-
Liu, Yonghuai
- Subjects
- *
ARTIFICIAL intelligence , *GEOMETRIC shapes , *MATHEMATICAL optimization , *ALGORITHMS , *SCANNING systems , *CAMERAS , *LEAST squares , *THREE-dimensional imaging , *ROBUST control - Abstract
For accurate registration of overlapping free form shapes, different points in one shape must select different points in another as their most sensible correspondents. To reach this ideal state, in this paper we develop a novel algorithm to penalize those points in one shape that select the same closest point in another as their tentative correspondents. The novel algorithm then models the relative weight change over time of a tentative correspondence as the difference between the negative functions of the numbers of points in one shape that actually and ideally select the same closest point in another. Such modeling results in an optimal estimation of the weights of different tentative correspondences, in the sense of deterministic annealing, that lead the camera motion parameters to be estimated in the weighted least squares sense. The proposed algorithm is initialized using the pure translational motion derived from the centroids difference of the overlapping free form shapes being registered. Experimental results show that it outperforms three selected state-of-the-art algorithms on the whole for the accurate and robust registration of real overlapping free form shapes captured using two different laser scanners under typical imaging conditions. [ABSTRACT FROM PUBLISHER]
- Published
- 2011
- Full Text
- View/download PDF
357. Rigid and Articulated Point Registration with Expectation Conditional Maximization.
- Author
-
Horaud, Radu, Forbes, Florence, Yguel, Manuel, Dewaele, Guillaume, and Zhang, Jian
- Subjects
- *
IMAGE registration , *FEATURE extraction , *DATA modeling , *ANALYSIS of covariance , *ALGORITHMS , *ITERATIVE methods (Mathematics) , *ROBUST control , *MATRICES (Mathematics) - Abstract
This paper addresses the issue of matching rigid and articulated shapes through probabilistic point registration. The problem is recast into a missing data framework where unknown correspondences are handled via mixture models. Adopting a maximum likelihood principle, we introduce an innovative EM-like algorithm, namely, the Expectation Conditional Maximization for Point Registration (ECMPR) algorithm. The algorithm allows the use of general covariance matrices for the mixture model components and improves over the isotropic covariance case. We analyze in detail the associated consequences in terms of estimation of the registration parameters, and propose an optimal method for estimating the rotational and translational parameters based on semidefinite positive relaxation. We extend rigid registration to articulated registration. Robustness is ensured by detecting and rejecting outliers through the addition of a uniform component to the Gaussian mixture model at hand. We provide an in-depth analysis of our method and compare it both theoretically and experimentally with other robust methods for point registration. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
358. Topology Preserving Relaxation Labeling for Nonrigid Point Matching.
- Author
-
Lee, Jong-Ha and Won, Chang-Hee
- Subjects
- *
TOPOLOGY , *GRAPH labelings , *ALGORITHMS , *PATTERN perception , *PROBABILITY theory , *STATISTICAL correlation , *GEOMETRY - Abstract
This paper presents a relaxation labeling process with the newly defined compatibility measure for solving a general nonrigid point matching problem. In the literature, there exists a point matching method using relaxation labeling; however, the compatibility coefficient takes a binary value of zero or one depending on whether a point and a neighbor have corresponding points. Our approach generalizes this relaxation labeling method. The compatibility coefficient takes n-discrete values which measure the correlation between point pairs. In order to improve the speed of the algorithm, we use a diagram of log distance and polar angle bins to compute the correlation. The extensive experiments show that the proposed topology preserving relaxation algorithm significantly improves the matching performance compared to other state-of-the-art point matching algorithms. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
359. DEVELOPMENT OF AN INFOSHOP SERVICE SYSTEM.
- Author
-
Dong Won Kim, Kyung Pyo Jun, Geun Teak Ryu, and Hyeon Deok Bae
- Published
- 1996
- Full Text
- View/download PDF
360. Point Set Registration: Coherent Point Drift.
- Author
-
Myronenko, Andriy and Song, Xubo
- Abstract
Point set registration is a key component in many computer vision tasks. The goal of point set registration is to assign correspondences between two sets of points and to recover the transformation that maps one point set to the other. Multiple factors, including an unknown nonrigid spatial transformation, large dimensionality of point set, noise, and outliers, make the point set registration a challenging problem. We introduce a probabilistic method, called the Coherent Point Drift (CPD) algorithm, for both rigid and nonrigid point set registration. We consider the alignment of two point sets as a probability density estimation problem. We fit the Gaussian mixture model (GMM) centroids (representing the first point set) to the data (the second point set) by maximizing the likelihood. We force the GMM centroids to move coherently as a group to preserve the topological structure of the point sets. In the rigid case, we impose the coherence constraint by reparameterization of GMM centroid locations with rigid parameters and derive a closed form solution of the maximization step of the EM algorithm in arbitrary dimensions. In the nonrigid case, we impose the coherence constraint by regularizing the displacement field and using the variational calculus to derive the optimal transformation. We also introduce a fast algorithm that reduces the method computation complexity to linear. We test the CPD algorithm for both rigid and nonrigid transformations in the presence of noise, outliers, and missing points, where CPD shows accurate results and outperforms current state-of-the-art methods. [ABSTRACT FROM PUBLISHER]
- Published
- 2010
- Full Text
- View/download PDF
361. 3D Face Recognition Using Isogeodesic Stripes.
- Author
-
Berretti, Stefano, Del Bimbo, Alberto, and Pala, Pietro
- Abstract
In this paper, we present a novel approach to 3D face matching that shows high effectiveness in distinguishing facial differences between distinct individuals from differences induced by nonneutral expressions within the same individual. The approach takes into account geometrical information of the 3D face and encodes the relevant information into a compact representation in the form of a graph. Nodes of the graph represent equal width isogeodesic facial stripes. Arcs between pairs of nodes are labeled with descriptors, referred to as 3D Weighted Walkthroughs (3DWWs), that capture the mutual relative spatial displacement between all the pairs of points of the corresponding stripes. Face partitioning into isogeodesic stripes and 3DWWs together provide an approximate representation of local morphology of faces that exhibits smooth variations for changes induced by facial expressions. The graph-based representation permits very efficient matching for face recognition and is also suited to being employed for face identification in very large data sets with the support of appropriate index structures. The method obtained the best ranking at the SHREC 2008 contest for 3D face recognition. We present an extensive comparative evaluation of the performance with the FRGC v2.0 data set and the SHREC08 data set. [ABSTRACT FROM PUBLISHER]
- Published
- 2010
- Full Text
- View/download PDF
362. Robust 3D Face Recognition by Local Shape Difference Boosting.
- Author
-
Yueming Wang, Jianzhuang Liu, and Xiaoou Tang
- Subjects
- *
TEMPLATE matching (Digital image processing) , *THREE-dimensional imaging , *FACE perception , *PATTERN recognition systems , *ALGORITHMS - Abstract
This paper proposes a new 3D face recognition approach, Collective Shape Difference Classifier (CSDC), to meet practical application requirements, i.e., high recognition performance, high computational efficiency, and easy implementation. We first present a fast posture alignment method which is self-dependent and avoids the registration between an input face against every face in the gallery. Then, a Signed Shape Difference Map (SSDM) is computed between two aligned 3D faces as a mediate representation for the shape comparison. Based on the SSDMs, three kinds of features are used to encode both the local similarity and the change characteristics between facial shapes. The most discriminative local features are selected optimally by boosting and trained as weak classifiers for assembling three collective strong classifiers, namely, CSDCs with respect to the three kinds of features. Different schemes are designed for verification and identification to pursue high performance in both recognition and computation. The experiments, carried out on FRGC v2 with the standard protocol, yield three verification rates all better than 97.9 percent with the FAR of 0.1 percent and rank-1 recognition rates above 98 percent. Each recognition against a gallery with 1,000 faces only takes about 3.6 seconds. These experimental results demonstrate that our algorithm is not only effective but also time efficient. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
363. Navigation of Mobile Robots in Unknown Environments Using Range Measurements
- Author
-
Žalud, Luděk, Jež, Ondřej, Žalud, Luděk, and Jež, Ondřej
- Abstract
The ability of a robot to navigate itself in the environment is a crucial step towards its autonomy. Navigation as a subtask of the development of autonomous robots is the subject of this thesis, focusing on the development of a method for simultaneous localization an mapping (SLAM) of mobile robots in six degrees of freedom (DOF). As a part of this research, a platform for 3D range data acquisition based on a continuously inclined laser rangefinder was developed. This platform is presented, evaluating the measurements and also presenting the robotic equipment on which the platform can be fitted. The localization and mapping task is equal to the registration of multiple 3D images into a common frame of reference. For this purpose, a method based on the Iterative Closest Point (ICP) algorithm was developed. First, the originally implemented SLAM method is presented, focusing on the time-wise performance and the registration quality issues introduced by the implemented algorithms. In order to accelerate and improve the quality of the time-demanding 6DOF image registration, an extended method was developed. The major extension is the introduction of a factorized registration, extracting 2D representations of vertical objects called leveled maps from the 3D point sets, ensuring these representations are 3DOF invariant. The extracted representations are registered in 3DOF using ICP algorithm, allowing pre-alignment of the 3D data for the subsequent robust 6DOF ICP based registration. The extended method is presented, showing all important modifications to the original method. The developed registration method was evaluated using real 3D data acquired in different indoor environments, examining the benefits of the factorization and other extensions as well as the performance of the original ICP based method. The factorization gives promising results compared to a single phase 6DOF registration in vertically structured environments. Also, the disadvantages of the method ar, Schopnost lokalizace a navigace je podmínkou autonomního provozu mobilních robotů. Předmětem této disertační práce jsou navigační metody se zaměřením na metodu pro simultánní lokalizaci a mapování (SLAM) mobilních robotů v šesti stupních volnosti (6DOF). Nedílnou součástí tohoto výzkumu byl vývoj platformy pro sběr 3D vzdálenostních dat s využitím kontinuálně naklápěného laserového řádkového scanneru. Tato platforma byla vyvinuta jako samostatný modul, aby mohla být umístěna na různé šasi mobilních robotů. Úkol lokalizace a mapování je ekvivalentní registraci více 3D obrazů do společného souřadného systému. Pro tyto účely byla vyvinuta metoda založená na algoritmu Iterative Closest Point Algorithm (ICP). Původně implementovaná verze navigační metody využívá ICP s akcelerací pomocí kd-stromů přičemž jsou zhodnoceny její kvalitativní a výkonnostní aspekty. Na základě této analýzy byly vyvinuty rozšíření původní metody založené na ICP. Jednou z hlavních modifikací je faktorizace registračního procesu, kdy tato faktorizace je založena na redukci dat: vytvoření 2D „leveled“ map (ve smyslu jednoúrovňových map) ze 3D vzdálenostních obrazů. Pro tuto redukci je technologicky i algoritmicky zajištěna invariantnost těchto map vůči třem stupňům volnosti. Tyto redukované mapy jsou registrovány pomocí ICP ve zbylých třech stupních volnosti, přičemž získaná transformace je aplikována na 3D data za účelem před-registrace 3D obrazů. Následně je provedena robustní 6DOF registrace. Rozšířená metoda je v disertační práci v popsána spolu se všemi podstatnými modifikacemi. Vyvinutá metoda byla otestována a zhodnocena s využitím skutečných 3D vzdálenostních dat naměřených v různých vnitřních prostředích. Jsou zhodnoceny přínosy faktorizace a jiných modifikací ve srovnání s původní jednofázovou 6DOF registrací, také jsou zmíněny nevýhody implementované metody a navrženy způsoby jejich řešení. Nakonec následuje návrh budoucího výzkumu a diskuse o možnostech dalšího rozvoje.
364. Navigation of Mobile Robots in Unknown Environments Using Range Measurements
- Author
-
Žalud, Luděk, Jež, Ondřej, Žalud, Luděk, and Jež, Ondřej
- Abstract
The ability of a robot to navigate itself in the environment is a crucial step towards its autonomy. Navigation as a subtask of the development of autonomous robots is the subject of this thesis, focusing on the development of a method for simultaneous localization an mapping (SLAM) of mobile robots in six degrees of freedom (DOF). As a part of this research, a platform for 3D range data acquisition based on a continuously inclined laser rangefinder was developed. This platform is presented, evaluating the measurements and also presenting the robotic equipment on which the platform can be fitted. The localization and mapping task is equal to the registration of multiple 3D images into a common frame of reference. For this purpose, a method based on the Iterative Closest Point (ICP) algorithm was developed. First, the originally implemented SLAM method is presented, focusing on the time-wise performance and the registration quality issues introduced by the implemented algorithms. In order to accelerate and improve the quality of the time-demanding 6DOF image registration, an extended method was developed. The major extension is the introduction of a factorized registration, extracting 2D representations of vertical objects called leveled maps from the 3D point sets, ensuring these representations are 3DOF invariant. The extracted representations are registered in 3DOF using ICP algorithm, allowing pre-alignment of the 3D data for the subsequent robust 6DOF ICP based registration. The extended method is presented, showing all important modifications to the original method. The developed registration method was evaluated using real 3D data acquired in different indoor environments, examining the benefits of the factorization and other extensions as well as the performance of the original ICP based method. The factorization gives promising results compared to a single phase 6DOF registration in vertically structured environments. Also, the disadvantages of the method ar, Schopnost lokalizace a navigace je podmínkou autonomního provozu mobilních robotů. Předmětem této disertační práce jsou navigační metody se zaměřením na metodu pro simultánní lokalizaci a mapování (SLAM) mobilních robotů v šesti stupních volnosti (6DOF). Nedílnou součástí tohoto výzkumu byl vývoj platformy pro sběr 3D vzdálenostních dat s využitím kontinuálně naklápěného laserového řádkového scanneru. Tato platforma byla vyvinuta jako samostatný modul, aby mohla být umístěna na různé šasi mobilních robotů. Úkol lokalizace a mapování je ekvivalentní registraci více 3D obrazů do společného souřadného systému. Pro tyto účely byla vyvinuta metoda založená na algoritmu Iterative Closest Point Algorithm (ICP). Původně implementovaná verze navigační metody využívá ICP s akcelerací pomocí kd-stromů přičemž jsou zhodnoceny její kvalitativní a výkonnostní aspekty. Na základě této analýzy byly vyvinuty rozšíření původní metody založené na ICP. Jednou z hlavních modifikací je faktorizace registračního procesu, kdy tato faktorizace je založena na redukci dat: vytvoření 2D „leveled“ map (ve smyslu jednoúrovňových map) ze 3D vzdálenostních obrazů. Pro tuto redukci je technologicky i algoritmicky zajištěna invariantnost těchto map vůči třem stupňům volnosti. Tyto redukované mapy jsou registrovány pomocí ICP ve zbylých třech stupních volnosti, přičemž získaná transformace je aplikována na 3D data za účelem před-registrace 3D obrazů. Následně je provedena robustní 6DOF registrace. Rozšířená metoda je v disertační práci v popsána spolu se všemi podstatnými modifikacemi. Vyvinutá metoda byla otestována a zhodnocena s využitím skutečných 3D vzdálenostních dat naměřených v různých vnitřních prostředích. Jsou zhodnoceny přínosy faktorizace a jiných modifikací ve srovnání s původní jednofázovou 6DOF registrací, také jsou zmíněny nevýhody implementované metody a navrženy způsoby jejich řešení. Nakonec následuje návrh budoucího výzkumu a diskuse o možnostech dalšího rozvoje.
365. Navigation of Mobile Robots in Unknown Environments Using Range Measurements
- Author
-
Žalud, Luděk, Jež, Ondřej, Žalud, Luděk, and Jež, Ondřej
- Abstract
The ability of a robot to navigate itself in the environment is a crucial step towards its autonomy. Navigation as a subtask of the development of autonomous robots is the subject of this thesis, focusing on the development of a method for simultaneous localization an mapping (SLAM) of mobile robots in six degrees of freedom (DOF). As a part of this research, a platform for 3D range data acquisition based on a continuously inclined laser rangefinder was developed. This platform is presented, evaluating the measurements and also presenting the robotic equipment on which the platform can be fitted. The localization and mapping task is equal to the registration of multiple 3D images into a common frame of reference. For this purpose, a method based on the Iterative Closest Point (ICP) algorithm was developed. First, the originally implemented SLAM method is presented, focusing on the time-wise performance and the registration quality issues introduced by the implemented algorithms. In order to accelerate and improve the quality of the time-demanding 6DOF image registration, an extended method was developed. The major extension is the introduction of a factorized registration, extracting 2D representations of vertical objects called leveled maps from the 3D point sets, ensuring these representations are 3DOF invariant. The extracted representations are registered in 3DOF using ICP algorithm, allowing pre-alignment of the 3D data for the subsequent robust 6DOF ICP based registration. The extended method is presented, showing all important modifications to the original method. The developed registration method was evaluated using real 3D data acquired in different indoor environments, examining the benefits of the factorization and other extensions as well as the performance of the original ICP based method. The factorization gives promising results compared to a single phase 6DOF registration in vertically structured environments. Also, the disadvantages of the method ar, Schopnost lokalizace a navigace je podmínkou autonomního provozu mobilních robotů. Předmětem této disertační práce jsou navigační metody se zaměřením na metodu pro simultánní lokalizaci a mapování (SLAM) mobilních robotů v šesti stupních volnosti (6DOF). Nedílnou součástí tohoto výzkumu byl vývoj platformy pro sběr 3D vzdálenostních dat s využitím kontinuálně naklápěného laserového řádkového scanneru. Tato platforma byla vyvinuta jako samostatný modul, aby mohla být umístěna na různé šasi mobilních robotů. Úkol lokalizace a mapování je ekvivalentní registraci více 3D obrazů do společného souřadného systému. Pro tyto účely byla vyvinuta metoda založená na algoritmu Iterative Closest Point Algorithm (ICP). Původně implementovaná verze navigační metody využívá ICP s akcelerací pomocí kd-stromů přičemž jsou zhodnoceny její kvalitativní a výkonnostní aspekty. Na základě této analýzy byly vyvinuty rozšíření původní metody založené na ICP. Jednou z hlavních modifikací je faktorizace registračního procesu, kdy tato faktorizace je založena na redukci dat: vytvoření 2D „leveled“ map (ve smyslu jednoúrovňových map) ze 3D vzdálenostních obrazů. Pro tuto redukci je technologicky i algoritmicky zajištěna invariantnost těchto map vůči třem stupňům volnosti. Tyto redukované mapy jsou registrovány pomocí ICP ve zbylých třech stupních volnosti, přičemž získaná transformace je aplikována na 3D data za účelem před-registrace 3D obrazů. Následně je provedena robustní 6DOF registrace. Rozšířená metoda je v disertační práci v popsána spolu se všemi podstatnými modifikacemi. Vyvinutá metoda byla otestována a zhodnocena s využitím skutečných 3D vzdálenostních dat naměřených v různých vnitřních prostředích. Jsou zhodnoceny přínosy faktorizace a jiných modifikací ve srovnání s původní jednofázovou 6DOF registrací, také jsou zmíněny nevýhody implementované metody a navrženy způsoby jejich řešení. Nakonec následuje návrh budoucího výzkumu a diskuse o možnostech dalšího rozvoje.
366. Navigation of Mobile Robots in Unknown Environments Using Range Measurements
- Author
-
Žalud, Luděk and Žalud, Luděk
- Abstract
The ability of a robot to navigate itself in the environment is a crucial step towards its autonomy. Navigation as a subtask of the development of autonomous robots is the subject of this thesis, focusing on the development of a method for simultaneous localization an mapping (SLAM) of mobile robots in six degrees of freedom (DOF). As a part of this research, a platform for 3D range data acquisition based on a continuously inclined laser rangefinder was developed. This platform is presented, evaluating the measurements and also presenting the robotic equipment on which the platform can be fitted. The localization and mapping task is equal to the registration of multiple 3D images into a common frame of reference. For this purpose, a method based on the Iterative Closest Point (ICP) algorithm was developed. First, the originally implemented SLAM method is presented, focusing on the time-wise performance and the registration quality issues introduced by the implemented algorithms. In order to accelerate and improve the quality of the time-demanding 6DOF image registration, an extended method was developed. The major extension is the introduction of a factorized registration, extracting 2D representations of vertical objects called leveled maps from the 3D point sets, ensuring these representations are 3DOF invariant. The extracted representations are registered in 3DOF using ICP algorithm, allowing pre-alignment of the 3D data for the subsequent robust 6DOF ICP based registration. The extended method is presented, showing all important modifications to the original method. The developed registration method was evaluated using real 3D data acquired in different indoor environments, examining the benefits of the factorization and other extensions as well as the performance of the original ICP based method. The factorization gives promising results compared to a single phase 6DOF registration in vertically structured environments. Also, the disadvantages of the method ar, Schopnost lokalizace a navigace je podmínkou autonomního provozu mobilních robotů. Předmětem této disertační práce jsou navigační metody se zaměřením na metodu pro simultánní lokalizaci a mapování (SLAM) mobilních robotů v šesti stupních volnosti (6DOF). Nedílnou součástí tohoto výzkumu byl vývoj platformy pro sběr 3D vzdálenostních dat s využitím kontinuálně naklápěného laserového řádkového scanneru. Tato platforma byla vyvinuta jako samostatný modul, aby mohla být umístěna na různé šasi mobilních robotů. Úkol lokalizace a mapování je ekvivalentní registraci více 3D obrazů do společného souřadného systému. Pro tyto účely byla vyvinuta metoda založená na algoritmu Iterative Closest Point Algorithm (ICP). Původně implementovaná verze navigační metody využívá ICP s akcelerací pomocí kd-stromů přičemž jsou zhodnoceny její kvalitativní a výkonnostní aspekty. Na základě této analýzy byly vyvinuty rozšíření původní metody založené na ICP. Jednou z hlavních modifikací je faktorizace registračního procesu, kdy tato faktorizace je založena na redukci dat: vytvoření 2D „leveled“ map (ve smyslu jednoúrovňových map) ze 3D vzdálenostních obrazů. Pro tuto redukci je technologicky i algoritmicky zajištěna invariantnost těchto map vůči třem stupňům volnosti. Tyto redukované mapy jsou registrovány pomocí ICP ve zbylých třech stupních volnosti, přičemž získaná transformace je aplikována na 3D data za účelem před-registrace 3D obrazů. Následně je provedena robustní 6DOF registrace. Rozšířená metoda je v disertační práci v popsána spolu se všemi podstatnými modifikacemi. Vyvinutá metoda byla otestována a zhodnocena s využitím skutečných 3D vzdálenostních dat naměřených v různých vnitřních prostředích. Jsou zhodnoceny přínosy faktorizace a jiných modifikací ve srovnání s původní jednofázovou 6DOF registrací, také jsou zmíněny nevýhody implementované metody a navrženy způsoby jejich řešení. Nakonec následuje návrh budoucího výzkumu a diskuse o možnostech dalšího rozvoje.
367. Navigation of Mobile Robots in Unknown Environments Using Range Measurements
- Author
-
Žalud, Luděk and Žalud, Luděk
- Abstract
The ability of a robot to navigate itself in the environment is a crucial step towards its autonomy. Navigation as a subtask of the development of autonomous robots is the subject of this thesis, focusing on the development of a method for simultaneous localization an mapping (SLAM) of mobile robots in six degrees of freedom (DOF). As a part of this research, a platform for 3D range data acquisition based on a continuously inclined laser rangefinder was developed. This platform is presented, evaluating the measurements and also presenting the robotic equipment on which the platform can be fitted. The localization and mapping task is equal to the registration of multiple 3D images into a common frame of reference. For this purpose, a method based on the Iterative Closest Point (ICP) algorithm was developed. First, the originally implemented SLAM method is presented, focusing on the time-wise performance and the registration quality issues introduced by the implemented algorithms. In order to accelerate and improve the quality of the time-demanding 6DOF image registration, an extended method was developed. The major extension is the introduction of a factorized registration, extracting 2D representations of vertical objects called leveled maps from the 3D point sets, ensuring these representations are 3DOF invariant. The extracted representations are registered in 3DOF using ICP algorithm, allowing pre-alignment of the 3D data for the subsequent robust 6DOF ICP based registration. The extended method is presented, showing all important modifications to the original method. The developed registration method was evaluated using real 3D data acquired in different indoor environments, examining the benefits of the factorization and other extensions as well as the performance of the original ICP based method. The factorization gives promising results compared to a single phase 6DOF registration in vertically structured environments. Also, the disadvantages of the method ar, Schopnost lokalizace a navigace je podmínkou autonomního provozu mobilních robotů. Předmětem této disertační práce jsou navigační metody se zaměřením na metodu pro simultánní lokalizaci a mapování (SLAM) mobilních robotů v šesti stupních volnosti (6DOF). Nedílnou součástí tohoto výzkumu byl vývoj platformy pro sběr 3D vzdálenostních dat s využitím kontinuálně naklápěného laserového řádkového scanneru. Tato platforma byla vyvinuta jako samostatný modul, aby mohla být umístěna na různé šasi mobilních robotů. Úkol lokalizace a mapování je ekvivalentní registraci více 3D obrazů do společného souřadného systému. Pro tyto účely byla vyvinuta metoda založená na algoritmu Iterative Closest Point Algorithm (ICP). Původně implementovaná verze navigační metody využívá ICP s akcelerací pomocí kd-stromů přičemž jsou zhodnoceny její kvalitativní a výkonnostní aspekty. Na základě této analýzy byly vyvinuty rozšíření původní metody založené na ICP. Jednou z hlavních modifikací je faktorizace registračního procesu, kdy tato faktorizace je založena na redukci dat: vytvoření 2D „leveled“ map (ve smyslu jednoúrovňových map) ze 3D vzdálenostních obrazů. Pro tuto redukci je technologicky i algoritmicky zajištěna invariantnost těchto map vůči třem stupňům volnosti. Tyto redukované mapy jsou registrovány pomocí ICP ve zbylých třech stupních volnosti, přičemž získaná transformace je aplikována na 3D data za účelem před-registrace 3D obrazů. Následně je provedena robustní 6DOF registrace. Rozšířená metoda je v disertační práci v popsána spolu se všemi podstatnými modifikacemi. Vyvinutá metoda byla otestována a zhodnocena s využitím skutečných 3D vzdálenostních dat naměřených v různých vnitřních prostředích. Jsou zhodnoceny přínosy faktorizace a jiných modifikací ve srovnání s původní jednofázovou 6DOF registrací, také jsou zmíněny nevýhody implementované metody a navrženy způsoby jejich řešení. Nakonec následuje návrh budoucího výzkumu a diskuse o možnostech dalšího rozvoje.
368. Navigation of Mobile Robots in Unknown Environments Using Range Measurements
- Author
-
Žalud, Luděk and Žalud, Luděk
- Abstract
The ability of a robot to navigate itself in the environment is a crucial step towards its autonomy. Navigation as a subtask of the development of autonomous robots is the subject of this thesis, focusing on the development of a method for simultaneous localization an mapping (SLAM) of mobile robots in six degrees of freedom (DOF). As a part of this research, a platform for 3D range data acquisition based on a continuously inclined laser rangefinder was developed. This platform is presented, evaluating the measurements and also presenting the robotic equipment on which the platform can be fitted. The localization and mapping task is equal to the registration of multiple 3D images into a common frame of reference. For this purpose, a method based on the Iterative Closest Point (ICP) algorithm was developed. First, the originally implemented SLAM method is presented, focusing on the time-wise performance and the registration quality issues introduced by the implemented algorithms. In order to accelerate and improve the quality of the time-demanding 6DOF image registration, an extended method was developed. The major extension is the introduction of a factorized registration, extracting 2D representations of vertical objects called leveled maps from the 3D point sets, ensuring these representations are 3DOF invariant. The extracted representations are registered in 3DOF using ICP algorithm, allowing pre-alignment of the 3D data for the subsequent robust 6DOF ICP based registration. The extended method is presented, showing all important modifications to the original method. The developed registration method was evaluated using real 3D data acquired in different indoor environments, examining the benefits of the factorization and other extensions as well as the performance of the original ICP based method. The factorization gives promising results compared to a single phase 6DOF registration in vertically structured environments. Also, the disadvantages of the method ar, Schopnost lokalizace a navigace je podmínkou autonomního provozu mobilních robotů. Předmětem této disertační práce jsou navigační metody se zaměřením na metodu pro simultánní lokalizaci a mapování (SLAM) mobilních robotů v šesti stupních volnosti (6DOF). Nedílnou součástí tohoto výzkumu byl vývoj platformy pro sběr 3D vzdálenostních dat s využitím kontinuálně naklápěného laserového řádkového scanneru. Tato platforma byla vyvinuta jako samostatný modul, aby mohla být umístěna na různé šasi mobilních robotů. Úkol lokalizace a mapování je ekvivalentní registraci více 3D obrazů do společného souřadného systému. Pro tyto účely byla vyvinuta metoda založená na algoritmu Iterative Closest Point Algorithm (ICP). Původně implementovaná verze navigační metody využívá ICP s akcelerací pomocí kd-stromů přičemž jsou zhodnoceny její kvalitativní a výkonnostní aspekty. Na základě této analýzy byly vyvinuty rozšíření původní metody založené na ICP. Jednou z hlavních modifikací je faktorizace registračního procesu, kdy tato faktorizace je založena na redukci dat: vytvoření 2D „leveled“ map (ve smyslu jednoúrovňových map) ze 3D vzdálenostních obrazů. Pro tuto redukci je technologicky i algoritmicky zajištěna invariantnost těchto map vůči třem stupňům volnosti. Tyto redukované mapy jsou registrovány pomocí ICP ve zbylých třech stupních volnosti, přičemž získaná transformace je aplikována na 3D data za účelem před-registrace 3D obrazů. Následně je provedena robustní 6DOF registrace. Rozšířená metoda je v disertační práci v popsána spolu se všemi podstatnými modifikacemi. Vyvinutá metoda byla otestována a zhodnocena s využitím skutečných 3D vzdálenostních dat naměřených v různých vnitřních prostředích. Jsou zhodnoceny přínosy faktorizace a jiných modifikací ve srovnání s původní jednofázovou 6DOF registrací, také jsou zmíněny nevýhody implementované metody a navrženy způsoby jejich řešení. Nakonec následuje návrh budoucího výzkumu a diskuse o možnostech dalšího rozvoje.
369. Enhanced vehicle positioning in cooperative ITS by joint sensing of passive features
- Author
-
Henk Wymeersch, Nil Garcia, Ronald Raulefs, Gloria Soatti, Benoit Denis, and Monica Nicoli
- Subjects
Noise measurement ,Computer science ,Real-time computing ,02 engineering and technology ,Intelligent Transportation Systems ,symbols.namesake ,0203 mechanical engineering ,Global Positioning System ,11. Sustainability ,0502 economics and business ,Galileo (satellite navigation) ,cooperative positioning ,Distance measurement ,Intelligent transportation system ,Iterative closest point algorithm ,Consensus algorithms ,Vehicular ad hoc networks ,050210 logistics & transportation ,Sensors ,business.industry ,05 social sciences ,Global Positioning System, Iterative closest point algorithm, Sensors, Noise measurement, Vehicular ad hoc networks, Distance measurement ,020302 automobile design & engineering ,Ranging ,implicit positioning ,Feature (computer vision) ,Signal Processing ,symbols ,Telecommunications ,Satellite ,Belief propagation ,business ,Multipath propagation - Abstract
Satellite-based navigation systems, such as Global Positioning System (GPS) or Galileo, are the most common and accessible techniques for vehicle positioning. However, in dense urban areas, even if combined with vehicle on-board sensors, they lead to large localization errors due to multipath and signal blockage. In recent years, Cooperative Intelligent Transportation Systems (C-ITSs) have gained increasing attention as they allow vehicles to cooperate and broadcast safety-related information to the neighbors through Vehicle-to-Vehicle (V2V) communications. In this paper, a novel cooperative positioning method is developed by exploiting V2V communications without using explicit V2V ranging. Vehicles localize, in a distributed way, a set of jointly sensed non-cooperative features (e.g., people, traffic lights) and use them as common noisy reference points to implicitly enhance their own position accuracy. Distributed belief propagation is combined with consensus-based estimation of the features' positions to enable cooperative localization of vehicles. Numerical results show that the proposed method is able to significantly enhance the GPS-based vehicle location accuracy, especially in scenarios with dense feature deployments.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.