Back to Search
Start Over
Navigation of Mobile Robots in Unknown Environments Using Range Measurements
-
Abstract
- The ability of a robot to navigate itself in the environment is a crucial step towards its autonomy. Navigation as a subtask of the development of autonomous robots is the subject of this thesis, focusing on the development of a method for simultaneous localization an mapping (SLAM) of mobile robots in six degrees of freedom (DOF). As a part of this research, a platform for 3D range data acquisition based on a continuously inclined laser rangefinder was developed. This platform is presented, evaluating the measurements and also presenting the robotic equipment on which the platform can be fitted. The localization and mapping task is equal to the registration of multiple 3D images into a common frame of reference. For this purpose, a method based on the Iterative Closest Point (ICP) algorithm was developed. First, the originally implemented SLAM method is presented, focusing on the time-wise performance and the registration quality issues introduced by the implemented algorithms. In order to accelerate and improve the quality of the time-demanding 6DOF image registration, an extended method was developed. The major extension is the introduction of a factorized registration, extracting 2D representations of vertical objects called leveled maps from the 3D point sets, ensuring these representations are 3DOF invariant. The extracted representations are registered in 3DOF using ICP algorithm, allowing pre-alignment of the 3D data for the subsequent robust 6DOF ICP based registration. The extended method is presented, showing all important modifications to the original method. The developed registration method was evaluated using real 3D data acquired in different indoor environments, examining the benefits of the factorization and other extensions as well as the performance of the original ICP based method. The factorization gives promising results compared to a single phase 6DOF registration in vertically structured environments. Also, the disadvantages of the method ar<br />Schopnost lokalizace a navigace je podmínkou autonomního provozu mobilních robotů. Předmětem této disertační práce jsou navigační metody se zaměřením na metodu pro simultánní lokalizaci a mapování (SLAM) mobilních robotů v šesti stupních volnosti (6DOF). Nedílnou součástí tohoto výzkumu byl vývoj platformy pro sběr 3D vzdálenostních dat s využitím kontinuálně naklápěného laserového řádkového scanneru. Tato platforma byla vyvinuta jako samostatný modul, aby mohla být umístěna na různé šasi mobilních robotů. Úkol lokalizace a mapování je ekvivalentní registraci více 3D obrazů do společného souřadného systému. Pro tyto účely byla vyvinuta metoda založená na algoritmu Iterative Closest Point Algorithm (ICP). Původně implementovaná verze navigační metody využívá ICP s akcelerací pomocí kd-stromů přičemž jsou zhodnoceny její kvalitativní a výkonnostní aspekty. Na základě této analýzy byly vyvinuty rozšíření původní metody založené na ICP. Jednou z hlavních modifikací je faktorizace registračního procesu, kdy tato faktorizace je založena na redukci dat: vytvoření 2D „leveled“ map (ve smyslu jednoúrovňových map) ze 3D vzdálenostních obrazů. Pro tuto redukci je technologicky i algoritmicky zajištěna invariantnost těchto map vůči třem stupňům volnosti. Tyto redukované mapy jsou registrovány pomocí ICP ve zbylých třech stupních volnosti, přičemž získaná transformace je aplikována na 3D data za účelem před-registrace 3D obrazů. Následně je provedena robustní 6DOF registrace. Rozšířená metoda je v disertační práci v popsána spolu se všemi podstatnými modifikacemi. Vyvinutá metoda byla otestována a zhodnocena s využitím skutečných 3D vzdálenostních dat naměřených v různých vnitřních prostředích. Jsou zhodnoceny přínosy faktorizace a jiných modifikací ve srovnání s původní jednofázovou 6DOF registrací, také jsou zmíněny nevýhody implementované metody a navrženy způsoby jejich řešení. Nakonec následuje návrh budoucího výzkumu a diskuse o možnostech dalšího rozvoje.
Details
- Database :
- OAIster
- Notes :
- English
- Publication Type :
- Electronic Resource
- Accession number :
- edsoai.on1132737199
- Document Type :
- Electronic Resource