1. Machine learning prediction of future amyloid beta positivity in amyloid-negative individuals
- Author
-
Elaheh Moradi, Mithilesh Prakash, Anette Hall, Alina Solomon, Bryan Strange, Jussi Tohka, and for the Alzheimer’s Disease Neuroimaging Initiative
- Subjects
Machine learning ,Amyloid beta ,Conversion prediction ,Alzheimer’s disease ,Mild cognitive impairment ,Neurosciences. Biological psychiatry. Neuropsychiatry ,RC321-571 ,Neurology. Diseases of the nervous system ,RC346-429 - Abstract
Abstract Background The pathophysiology of Alzheimer’s disease (AD) involves $$\beta$$ β -amyloid (A $$\beta$$ β ) accumulation. Early identification of individuals with abnormal $$\beta$$ β -amyloid levels is crucial, but A $$\beta$$ β quantification with positron emission tomography (PET) and cerebrospinal fluid (CSF) is invasive and expensive. Methods We propose a machine learning framework using standard non-invasive (MRI, demographics, APOE, neuropsychology) measures to predict future A $$\beta$$ β -positivity in A $$\beta$$ β -negative individuals. We separately study A $$\beta$$ β -positivity defined by PET and CSF. Results Cross-validated AUC for 4-year A $$\beta$$ β conversion prediction was 0.78 for the CSF-based and 0.68 for the PET-based A $$\beta$$ β definitions. Although not trained for the clinical status-change prediction, the CSF-based model excelled in predicting future mild cognitive impairment (MCI)/dementia conversion in cognitively normal/MCI individuals (AUCs, respectively, 0.76 and 0.89 with a separate dataset). Conclusion Standard measures have potential in detecting future A $$\beta$$ β -positivity and assessing conversion risk, even in cognitively normal individuals. The CSF-based definition led to better predictions than the PET-based definition.
- Published
- 2024
- Full Text
- View/download PDF