Back to Search Start Over

Machine learning prediction of future amyloid beta positivity in amyloid-negative individuals

Authors :
Elaheh Moradi
Mithilesh Prakash
Anette Hall
Alina Solomon
Bryan Strange
Jussi Tohka
for the Alzheimer’s Disease Neuroimaging Initiative
Source :
Alzheimer’s Research & Therapy, Vol 16, Iss 1, Pp 1-18 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background The pathophysiology of Alzheimer’s disease (AD) involves $$\beta$$ β -amyloid (A $$\beta$$ β ) accumulation. Early identification of individuals with abnormal $$\beta$$ β -amyloid levels is crucial, but A $$\beta$$ β quantification with positron emission tomography (PET) and cerebrospinal fluid (CSF) is invasive and expensive. Methods We propose a machine learning framework using standard non-invasive (MRI, demographics, APOE, neuropsychology) measures to predict future A $$\beta$$ β -positivity in A $$\beta$$ β -negative individuals. We separately study A $$\beta$$ β -positivity defined by PET and CSF. Results Cross-validated AUC for 4-year A $$\beta$$ β conversion prediction was 0.78 for the CSF-based and 0.68 for the PET-based A $$\beta$$ β definitions. Although not trained for the clinical status-change prediction, the CSF-based model excelled in predicting future mild cognitive impairment (MCI)/dementia conversion in cognitively normal/MCI individuals (AUCs, respectively, 0.76 and 0.89 with a separate dataset). Conclusion Standard measures have potential in detecting future A $$\beta$$ β -positivity and assessing conversion risk, even in cognitively normal individuals. The CSF-based definition led to better predictions than the PET-based definition.

Details

Language :
English
ISSN :
17589193
Volume :
16
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Alzheimer’s Research & Therapy
Publication Type :
Academic Journal
Accession number :
edsdoj.596ebd8df5d7413a962e93cc0fa81edf
Document Type :
article
Full Text :
https://doi.org/10.1186/s13195-024-01415-w