37 results on '"Paola Ferrario"'
Search Results
2. Sensitivity of a tonne-scale NEXT detector for neutrinoless double-beta decay searches
- Author
-
R. Guenette, L. Ripoll, J.F. Toledo, S. Cárcel, B. J. P. Jones, P. Lebrun, A. Laing, C. Adams, N. Byrnes, A. Martínez, L.M.P. Fernandes, Javier Pérez, Iván Rivilla, F. Monrabal, I. J. Arnquist, N. López-March, J.M.R. Teixeira, Javier Rodríguez, F.I.G.M. Borges, M. Kekic, T. Contreras, A.D. McDonald, Celia Rogero, M. Losada, S. Cebrián, C. Newhouse, A.A. Denisenko, C.A.N. Conde, R.D.P. Mano, B. Palmeiro, J.A. Hernando Morata, L. Rogers, C. Romo-Luque, G. Díaz, A. Simón, Z. E. Meziani, R. Felkai, Zoraida Freixa, A. Goldschmidt, A. Usón, L. Labarga, E. Church, J. Hauptman, J.M.F. dos Santos, Kevin Bailey, C.M.B. Monteiro, J. Torrent, F.P. Santos, J.F.C.A. Veloso, E.D.C. Freitas, P. Herrero, R. Weiss-Babai, Diego González-Díaz, Y. Rodriguez Garcia, D.R. Nygren, Paola Ferrario, J. Ho, J. Renner, T.T. Vuong, Víctor H. Alvarez, J.T. White, A. Redwine, F.J. Mora, Y. Ifergan, Lior Arazi, V. Herrero, C.A.O. Henriques, E. Oblak, N. Yahlali, G. Martínez-Lema, K. Hafidi, M. Querol, A. Para, R. González, Romain Esteve, Roberto Gutiérrez, M. Sorel, C. Stanford, J. Escada, J. Haefner, A.L. Ferreira, J.V. Carrión, B. Romeo, F. Ballester, Frank W. Foss, C.D.R. Azevedo, S. Gosh, P. Thapa, R. C. Webb, J. M. Benlloch-Rodríguez, J. Muñoz Vidal, J. S. Díaz, M. Martínez-Vara, K. Woodruff, P. Novella, J. Martín-Albo, J.J. Gómez-Cadenas, J. Generowicz, European Commission, European Research Council, Ministerio de Economía y Competitividad (España), Agencia Estatal de Investigación (España), Ministerio de Ciencia, Innovación y Universidades (España), Generalitat Valenciana, Fundação para a Ciência e a Tecnologia (Portugal), Fundación 'la Caixa', and Department of Energy (US)
- Subjects
Nuclear and High Energy Physics ,chemistry.chemical_element ,QC770-798 ,Parameter space ,01 natural sciences ,7. Clean energy ,Atomic ,Nuclear physics ,Xenon ,Particle and Plasma Physics ,Double beta decay ,Nuclear and particle physics. Atomic energy. Radioactivity ,0103 physical sciences ,Dark Matter and Double Beta Decay (experiments) ,Nuclear ,Sensitivity (control systems) ,010306 general physics ,Mathematical Physics ,Physics ,Quantum Physics ,010308 nuclear & particles physics ,Raigs beta -- Desintegració ,Detector ,Molecular ,Detectors ,Nuclear & Particles Physics ,chemistry ,Beta rays -- Decay ,Neutrino ,Tonne ,Order of magnitude - Abstract
The NEXT collaboration: et al., The Neutrino Experiment with a Xenon TPC (NEXT) searches for the neutrinoless double-beta (0νββ) decay of 136Xe using high-pressure xenon gas TPCs with electroluminescent amplification. A scaled-up version of this technology with about 1 tonne of enriched xenon could reach in less than 5 years of operation a sensitivity to the half-life of 0νββ decay better than 1027 years, improving the current limits by at least one order of magnitude. This prediction is based on a well-understood background model dominated by radiogenic sources. The detector concept presented here represents a first step on a compelling path towards sensitivity to the parameter space defined by the inverted ordering of neutrino masses, and beyond., The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union’s Framework Programme for Research and Innovation Horizon 2020 (2014–2020) under the Grant Agreements No. 674896, 690575 and 740055; the Ministerio de Economía y Competitividad and the Ministerio de Ciencia, Innovación y Universidades of Spain under grants FIS2014-53371-C04, RTI2018-095979, the Severo Ochoa Program grants SEV-2014-0398 and CEX2018-000867-S, and the María de Maeztu Program MDM2016-0692; the Generalitat Valenciana of Spain under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT under project PTDC/FIS-NUC/2525/2014 and under projects UID/FIS/04559/2020 to fund the activities of LIBPhys-UC; the Pazy Foundation (Israel) under grants 877040 and 877041; the US Department of Energy under contracts number DE-AC02-06CH11357 (Argonne National Laboratory), DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), DE-FG02-13ER42020 (Texas A&M) and DE-SC0019223 / DE-SC0019054 (University of Texas at Arlington); and the University of Texas at Arlington. DGD acknowledges support from the Ramón y Cajal program (Spain) under contract number RYC-2015-18820. JM-A acknowledges support from Fundación Bancaria la Caixa (ID 100010434), grant code LCF/BQ/PI19/11690012, and from the Plan GenT program of the Generalitat Valenciana, grant code CIDEGENT/2019/049.
- Published
- 2021
3. Sensitivity of the NEXT experiment to Xe-124 double electron capture
- Author
-
C.M.B. Monteiro, J.F.C.A. Veloso, G. Díaz, E.D.C. Freitas, B. Palmeiro, Y. Rodriguez Garcia, R. Weiss-Babai, J. Muñoz Vidal, F.P. Santos, Saunab Ghosh, Sandra K. Johnston, J.T. White, F. Ballester, J. Renner, Lior Arazi, J. Generowicz, A.B. Redwine, P. Herrero, V. Herrero, G. Martínez-Lema, J.M. Benlloch-Rodríguez, Paola Ferrario, A. Goldschmidt, J. Hauptman, L. Ripoll, B. J. P. Jones, J. S. Díaz, M. Martínez-Vara, P. Novella, F. Monrabal, J. Martín-Albo, J.J. Gómez-Cadenas, I.J. Arnquist, N. López-March, C.D.R. Azevedo, Kevin Bailey, A.D. McDonald, C. Adams, N. Byrnes, J. Torrent, Jose Repond, M. Kekic, S. Riordan, E. Church, R.D.P. Mano, T. Contreras, M. Querol, Javier Pérez, J.V. Carrión, C. Romo-Luque, L.M.P. Fernandes, B. Romeo, C. Sofka, C.A.O. Henriques, F.J. Mora, J.A. Hernando Morata, K. Woodruff, Jose A. Rodriguez, D. González-Díaz, L. Rogers, A. Usón, Marta Losada, C.A.N. Conde, Luis Labarga, T.M. Stiegler, A. Para, Víctor H. Alvarez, D. R. Nygren, F.I.G.M. Borges, A. Laing, J. Haefner, A. Simón, N. Yahlali, M. Sorel, A.F.M. Fernandes, P. Lebrun, S. Cebrián, Ana Martínez, A.L. Ferreira, Romain Esteve, R. C. Webb, M. Diesburg, R. Guenette, J. Escada, J.F. Toledo, S. Cárcel, K. Hafidi, J.M.F. dos Santos, Y. Ifergan, R. Felkai, Roberto Gutiérrez, and UAM. Departamento de Física Teórica
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Electron capture ,Dark Matter and Double Beta Decay ,Extrapolation ,FOS: Physical sciences ,chemistry.chemical_element ,Electrons ,Electron ,01 natural sciences ,7. Clean energy ,Atomic ,High Energy Physics - Experiment ,TECNOLOGIA ELECTRONICA ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Xenon ,Particle and Plasma Physics ,Double beta decay ,0103 physical sciences ,Nuclear Matrix ,Nuclear ,Sensitivity (control systems) ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Mathematical Physics ,Physics ,Quantum Physics ,Isotope ,010308 nuclear & particles physics ,Raigs beta -- Desintegració ,Detector ,Física ,Molecular ,Detectors ,Instrumentation and Detectors (physics.ins-det) ,Beta Decay ,Nuclear & Particles Physics ,chemistry ,13. Climate action ,Beta rays -- Decay - Abstract
[EN] Double electron capture by proton-rich nuclei is a second-order nuclear process analogous to double beta decay. Despite their similarities, the decay signature is quite di erent, potentially providing a new channel to measure the hypothesized neutrinoless mode of these decays. The Standard-Model-allowed two-neutrino double electron capture has been predicted for a number of isotopes, but only observed in 78Kr, 130Ba and, recently, 124Xe. The sensitivity to this decay establishes a benchmark for the ultimate experimental goal, namely the potential to discover also the lepton-number-violating neutrinoless version of this process. Here we report on the current sensitivity of the NEXT-White detector to 124Xe 2 ECEC and on the extrapolation to NEXT-100. Using simulated data for the 2 ECEC signal and real data from NEXT-White operated with 124Xe-depleted gas as background, we de ne an optimal event selection that maximizes the NEXT-White sensitivity. We estimate that, for NEXT-100 operated with xenon gas isotopically enriched with 1 kg of 124Xe and for a 5-year run, a sensitivity to the two-neutroni double electron capture half-life of 6x10exp22 years (at 90% con dence level) or better can be reached., The NEXT collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreements No. 674896, 690575 and 740055; the Ministerio de Economia y Competitividad and the Ministerio de Ciencia, Innovacion y Universidades of Spain under grants FIS2014-53371-C04, RTI2018-095979, the Severo Ochoa Program grants SEV-2014-0398 and CEX2018-000867-S, and the Maria de Maeztu Program MDM-2016-0692; the GVA of Spain under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT under project PTDC/FIS-NUC/2525/2014, under project UID/FIS/04559/2013 to fund the activities of LIBPhys, and under grants PD/BD/105921/2014, SFRH/BPD/109180/2015 and SFRH/BPD/76842/2011; the U.S. Department of Energy under contracts number DE-AC02-06CH11357 (Argonne National Laboratory), DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), DE-FG02-13ER42020 (Texas A&M) and DE-SC0019223/DE-SC0019054 (University of Texas at Arlington); and the University of Texas at Arlington. DGD acknowledges Ramon y Cajal program (Spain) under contract number RYC-2015-18820. We also warmly acknowledge the Laboratori Nazionali del Gran Sasso (LNGS) and the Dark Side collaboration for their help with TPB coating of various parts of the NEXT-White TPC. Finally, we are grateful to the Laboratorio Subterraneo de Canfranc for hosting and supporting the NEXT experiment
- Published
- 2021
4. Accurate γ and MeV-electron track reconstruction with an ultra-low diffusion Xenon/TMA TPC at 10 atm
- Author
-
L. Segui, N. López-March, F. Aznar, L.M. Moutinho, J. Torrent, T. Dafni, G. Martínez-Lema, A. Lagraba, A. Laing, Hector Gomez, M. Sorel, A.L. Ferreira, F.I.G.M. Borges, L.M.P. Fernandes, L. Ripoll, J. M. Hauptman, N. Yahlali, A. Tomás, M. Nebot-Guinot, J.F.C.A. Veloso, E.D.C. Freitas, D. Calvet, V. M. Gehman, Romain Esteve, I. Giomataris, D. Shuman, A. Le Coguie, J. T. White, Javier Pérez, S. Cebrián, E. Ruiz-Choliz, M. Losada, J.L. Pérez Aparicio, R. C. Webb, J.F. Toledo, S. Cárcel, F.J. Mora, D. Lorca, J. S. Díaz, C. Sofka, Carlos R. Oliveira, D.C. Herrera, Manuel Camargo, J. Martín-Albo, J.J. Gómez-Cadenas, R. Veenhof, M. Monserrate, Roberto Gutiérrez, Paola Ferrario, I. Liubarsky, J.M.F. dos Santos, I. G. Irastorza, T. Miller, J. F. Castel, C.A.N. Conde, A Rodríguez, G. Luzón, C.D.R. Azevedo, J. A. Garcia, A. Goldschmidt, Víctor H. Alvarez, Z. Tsamalaidze, F.P. Santos, J. A. Hernando Morata, J.P. Mols, José Villar, J. Muñoz Vidal, F. Monrabal, D. R. Nygren, A. Simón, Ana Martínez, F.J. Iguaz, Ö. Şahin, A. Cervera, Luis M. Serra, C.M.B. Monteiro, Diego González-Díaz, Javier Rodríguez, L. Labarga, E. Ferrer-Ribas, A. Marí, M. Querol, and J Renner
- Subjects
Nuclear and High Energy Physics ,MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS ,Time projection chambers ,Analytical chemistry ,Double-beta decay ,Nuclear physics ,chemistry.chemical_element ,Electron ,7. Clean energy ,Penning-Fluorescent mixtures ,Microbulk micromegas ,TECNOLOGIA ELECTRONICA ,Xenon ,Double beta decay ,Instrumentation ,Physics ,Time projection chamber ,Resolution (electron density) ,MicroMegas detector ,Full width at half maximum ,Gamma and electron detection ,High pressure Xenon-Trimehylamine ,Volume (thermodynamics) ,chemistry ,Física nuclear - Abstract
We report the performance of a 10 atm Xenon/trimethylamine time projection chamber (TPC) for the detection of X-rays (30 keV) and gamma-rays (0.511-1.275 MeV) in conjunction with the accurate tracking of the associated electrons. When operated at such a high pressure and in similar to 1%-admixtures, trimethylamine (TMA) endows Xenon with an extremely low electron diffusion (1.3 +/- 0.13 mm-sigma (longitudinal), 0.95 +/- 0.20 mm-sigma (transverse) along 1 m drift) besides forming a convenient Penning-Fluorescent' mixture. The TPC, that houses 1.1 kg of gas in its fiducial volume, operated continuously for 100 live-days in charge amplification mode. The readout was performed through the recently introduced microbulk Micromegas technology and the AFTER chip, providing a 3D voxelization of 8 mm x 8 mm x 1.2 mm for approximately 10 cm/MeV-long electron tracks. Resolution in energy (epsilon) at full width half maximum (R) inside the fiducial volume ranged from R = 14.6% (30 keV) to R = 4.6% (1.275 MeV). This work was developed as part of the R&D program of the NEXT collaboration for future detector upgrades in the search of the neutrino-less double beta decay (beta beta 0 nu) in Xe-136, specifically those based on novel gas mixtures. Therefore we ultimately focus on the calorimetric and topological properties of the reconstructed MeV-electron tracks. In particular, the obtained energy resolution has been decomposed in its various contributions and improvements towards achieving the R =1.4%root MeV/epsilon levels obtained in small sensors are discussed, The NEXT collaboration acknowledges funding support from the following agencies and institutions: European Research Council under Advanced Grant 339787-NEXT and Starting Grant 240054-TREX, Spanish Ministerio de Economia y Competitividad under grants Consolider-Ingenio 2010 CSD2008-0037 (CUP) and CSD2007-00042 (CPAN), contracts FPA2008-03456 and FPA2009-13697; Portuguese Fundacao para a Ciencia e a Tecnologia; European FEDER under grant PPTDC/FIS/103860/2008; US Department Of Energy under contract DE-AC02-05CH11231.
- Published
- 2020
5. Characterisation of NEXT-DEMO using xenon Kα X-rays
- Author
-
J Renner, J. S. Díaz, J. Martín-Albo, J.J. Gómez-Cadenas, A. Laing, Víctor H. Alvarez, A. Simón, Paola Ferrario, L. Segui, J Pérez, M. Losada, G. Martínez-Lema, Hector Gomez, J F Toledo, F.I.G.M. Borges, S. Cebrián, J. M. Hauptman, R. C. Webb, D. Shuman, I. G. Irastorza, N. Yahlali, M. Monserrate, J. T. White, J.L. Pérez Aparicio, Z. Tsamalaidze, Romain Esteve, C. Sofka, J. A. Hernando Morata, J. Muñoz Vidal, L.M.P. Fernandes, A. Goldschmidt, D. R. Nygren, C.A.N. Conde, F.P. Santos, F.J. Mora, L. Ripoll, M. Sorel, A.L. Ferreira, D.C. Herrera, M. Nebot-Guinot, Carlos R. Oliveira, T. Dafni, V. M. Gehman, D. Lorca, G. Luzón, J.M.F. dos Santos, T. Miller, L.M. Moutinho, J. Torrent, A Rodríguez, Luis M. Serra, C.M.B. Monteiro, Diego González-Díaz, S. Cárcel, A. Cervera, Roberto Gutiérrez, I. Liubarsky, L. Labarga, Javier Rodríguez, Ana Martínez, J.F.C.A. Veloso, E.D.C. Freitas, Manuel Camargo, A. Marí, and F. Monrabal
- Subjects
MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS ,Time projection chambers ,chemistry.chemical_element ,Wavelength shifter ,Charge transport ,7. Clean energy ,TECNOLOGIA ELECTRONICA ,chemistry.chemical_compound ,Silicon photomultiplier ,Optics ,Xenon ,Ionization ,Physical instruments ,Instrumentation ,Mathematical Physics ,Detectors de radiació ,Physics ,Scintillation ,Time projection chamber ,business.industry ,Detector ,Tetraphenyl butadiene ,Multiplication and electroluminescence in rare gases and liquids ,Detectors ,Double-beta decay detectors ,chemistry ,Electroluminescence ,Nuclear counters ,Física -- Instruments ,Electroluminescència ,business - Abstract
[EN] The NEXT experiment aims to observe the neutrinoless double beta decay of 136Xe in a high-pressure xenon gas TPC using electroluminescence (EL) to amplify the signal from ionization. Understanding the response of the detector is imperative in achieving a consistent and well understood energy measurement. The abundance of xenon K-shell X-ray emission during data taking has been identified as a multitool for the characterisation of the fundamental parameters of the gas as well as the equalisation of the response of the detector. The NEXT-DEMO prototype is a 1.5 kg volume TPC filled with natural xenon. It employs an array of 19 PMTs as an energy plane and of 256 SiPMs as a tracking plane with the TPC light tube and SiPM surfaces being coated with tetraphenyl butadiene (TPB) which acts as a wavelength shifter for the VUV scintillation light produced by xenon. This paper presents the measurement of the properties of the drift of electrons in the TPC, the effects of the EL production region, and the extraction of position dependent correction constants using Ka X-ray deposits. These constants were used to equalise the response of the detector to deposits left by gammas from 22Na., This work was supported by the following agencies and institutions: the European Research Council under the Advanced Grant 339787-NEXT; the Ministerio de Economia y Competitividad of Spain under grants CONSOLIDER-Ingenio 2010 CSD2008-0037 (CUP), FPA2009-13697-C04 and FIS2012-37947-C04; the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231; and the Portuguese FCT and FEDER through the program COMPETE, project PTDC/FIS/103860/2008.
- Published
- 2020
6. Processing of Compton events in the PETALO readout system
- Author
-
M. Kekic, J. J. Gomez-Cadenas, Paola Ferrario, C. Romo-Luque, J.M. Benlloch-Rodríguez, J.V. Carrión, V. Herrero-Bosch, J. Renner, and R. Gadea
- Subjects
Physics ,Physics - Instrumentation and Detectors ,business.industry ,Image quality ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Gamma ray ,Compton scattering ,chemistry.chemical_element ,FOS: Physical sciences ,Iterative reconstruction ,Instrumentation and Detectors (physics.ins-det) ,Scintillator ,030218 nuclear medicine & medical imaging ,3. Good health ,03 medical and health sciences ,0302 clinical medicine ,Xenon ,Optics ,chemistry ,030220 oncology & carcinogenesis ,Positron emission ,business - Abstract
PETALO (Positron Emission TOF Apparatus based on Liquid xenOn) exploits the unique characteristics of liquid xenon as a scintillator for use in a PET detector. Here initial simulation studies are detailed which highlight the potential of such a detector and outline the steps taken in the reconstruction of 511 keV gamma rays and in the full PET image reconstruction. In particular, a neural network-based approach is conceived in order to tag gamma rays that are poorly reconstructed due to Compton scattering. It is found that though a significant fraction of events undergo Compton scattering, not all of these events will necessarily be poorly reconstructed. Further study is necessary to determine whether or not an online implementation of the neural network-based event tagging will provide sufficient recovery of the image quality., Presented at the 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference
- Published
- 2020
7. Radio frequency and DC high voltage breakdown of high pressure helium, argon, and xenon
- Author
-
C.D.R. Azevedo, J.F.C.A. Veloso, E.D.C. Freitas, R. Guenette, A. Para, Sandra K. Johnston, J.F. Toledo, S. Cárcel, F.P. Santos, F.J. Mora, C.A.N. Conde, Luis Labarga, G. Martínez-Lema, P. Lebrun, M. Sorel, Jose A. Rodriguez, A. Martínez, Roberto Gutiérrez, T.M. Stiegler, A. Usón, A.L. Ferreira, Saunab Ghosh, Jose Repond, J.V. Carrión, Víctor H. Alvarez, J.M. Benlloch-Rodríguez, Lior Arazi, T. Contreras, A.A. Denisenko, A. Simón, J.M.F. dos Santos, B. Romeo, M. Querol, S. Riordan, F.I.G.M. Borges, E. Church, J.T. White, L. Norman, J. Muñoz Vidal, D. González-Díaz, C.A.O. Henriques, J. Haefner, Kevin Bailey, J. Baeza-Rubio, L.M.P. Fernandes, G. Díaz, A.D. McDonald, S. Cebrián, L. Ripoll, N. López-March, B. J. P. Jones, D. Huerta, R. C. Webb, Frank W. Foss, Marta Losada, M. Diesburg, A.F.M. Fernandes, C. Sofka, L. Rogers, M. Kekic, F. Monrabal, J. Escada, K. Hafidi, J. Torrent, R.D.P. Mano, C.M.B. Monteiro, R. Felkai, Javier Pérez, A. Goldschmidt, Y. Rodriguez Garcia, J. Hauptman, K. Woodruff, P. Herrero, J.A. Hernando Morata, I.J. Arnquist, J. S. Díaz, P. Novella, C. Adams, N. Byrnes, J. Martín-Albo, J.J. Gómez-Cadenas, B. Palmeiro, V. Herrero, N. Yahlali, Romain Esteve, A. Laing, D. R. Nygren, J. Generowicz, F. Ballester, Paola Ferrario, P. Thapa, C. Romo-Luque, R. Weiss-Babai, and J. Renner
- Subjects
Materials science ,Physics - Instrumentation and Detectors ,chemistry.chemical_element ,FOS: Physical sciences ,Dielectric ,01 natural sciences ,030218 nuclear medicine & medical imaging ,TECNOLOGIA ELECTRONICA ,03 medical and health sciences ,Gaseous detectors ,0302 clinical medicine ,Xenon ,0103 physical sciences ,Nuclear Experiment (nucl-ex) ,Instrumentation ,Nuclear Experiment ,Mathematical Physics ,Helium ,Argon ,Dielectric strength ,010308 nuclear & particles physics ,High voltage ,Instrumentation and Detectors (physics.ins-det) ,Gaseous imaging and tracking detectors ,chemistry ,Radio frequency ,Atomic physics ,Voltage - Abstract
Motivated by the possibility of guiding daughter ions from double beta decay events to single-ion sensors for barium tagging, the NEXT collaboration is developing a program of R&D to test radio frequency (RF) carpets for ion transport in high pressure xenon gas. This would require carpet functionality in regimes at higher pressures than have been previously reported, implying correspondingly larger electrode voltages than in existing systems. This mode of operation appears plausible for contemporary RF-carpet geometries due to the higher predicted breakdown strength of high pressure xenon relative to low pressure helium, the working medium in most existing RF carpet devices. In this paper we present the first measurements of the high voltage dielectric strength of xenon gas at high pressure and at the relevant RF frequencies for ion transport (in the 10 MHz range), as well as new DC and RF measurements of the dielectric strengths of high pressure argon and helium gases at small gap sizes. We find breakdown voltages that are compatible with stable RF carpet operation given the gas, pressure, voltage, materials and geometry of interest.
- Published
- 2020
8. Helium–Xenon mixtures to improve the topological signature in high pressure gas xenon TPCs
- Author
-
F.J. Mora, T.M. Stiegler, S. Riordan, A. Laing, F.I.G.M. Borges, R. Felkai, G. Martínez-Lema, J. Renner, A.D. McDonald, J.F.C.A. Veloso, E.D.C. Freitas, J. Muñoz Vidal, A. Goldschmidt, J. Hauptman, L.M. Moutinho, J. Torrent, Javier Rodríguez, L.M.P. Fernandes, F. Monrabal, Jose Repond, Víctor H. Alvarez, B. Palmeiro, J.V. Carrión, C.A.N. Conde, Paola Ferrario, A. Simón, S. Cebrián, M. Musti, L. Rogers, J. S. Díaz, P. Novella, J. Martín-Albo, Lior Arazi, A. Para, J.J. Gómez-Cadenas, M. Losada, R. C. Webb, N. López-March, M. Sorel, C. Romo-Luque, K. Hafidi, C.D.R. Azevedo, C. Adams, V. Herrero, D.R. Nygren, A.L. Ferreira, A. Botas, Roberto Gutiérrez, N. Yahlali, J.A. Hernando Morata, A.I. Hernandez, Z. Tsamalaidze, M. Nebot-Guinot, Romain Esteve, L. Labarga, F.P. Santos, C.A.O. Henriques, J.F. Toledo, C. Sofka, S. Cárcel, P. Lebrun, A. Martínez, M. Diesburg, J. Escada, M. Querol, Sandra K. Johnston, J.T. White, C.M.B. Monteiro, Diego González-Díaz, J.M. Benlloch-Rodríguez, J.M.F. dos Santos, Javier Pérez, L. Ripoll, B. J. P. Jones, and R. Guenette
- Subjects
Enginyeria -- Instruments ,Nuclear and High Energy Physics ,Photomultiplier ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Analytical chemistry ,FOS: Physical sciences ,chemistry.chemical_element ,Electron ,Electroluminescence ,7. Clean energy ,01 natural sciences ,Engineering instruments ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Xenon ,Double beta decay ,0103 physical sciences ,Nuclear Experiment (nucl-ex) ,Diffusion (business) ,010306 general physics ,Nuclear Experiment ,Instrumentation ,Detectors de radiació ,Helium ,Physics ,Time projection chamber ,010308 nuclear & particles physics ,Instrumentation and Detectors (physics.ins-det) ,3. Good health ,chemistry ,Nuclear counters ,Electroluminescència ,Atomic physics - Abstract
Within the framework of xenon-based double beta decay experiments, we propose the possibility to improve the background rejection of an electroluminescent Time Projection Chamber (EL TPC) by reducing the diffusion of the drifting electrons while keeping nearly intact the energy resolution of a pure xenon EL TPC. Based on state-of-the-art microscopic simulations, a substantial addition of helium, around 10 or 15~\%, may reduce drastically the transverse diffusion down to 2.5~mm/$\sqrt{\mathrm{m}}$ from the 10.5~mm/$\sqrt{\mathrm{m}}$ of pure xenon. The longitudinal diffusion remains around 4~mm/$\sqrt{\mathrm{m}}$. Light production studies have been performed as well. They show that the relative variation in energy resolution introduced by such a change does not exceed a few percent, which leaves the energy resolution practically unchanged. The technical caveats of using photomultipliers close to an helium atmosphere are also discussed in detail., 8 pages, 7 figures
- Published
- 2018
- Full Text
- View/download PDF
9. Electron drift and longitudinal diffusion in high pressure xenon-helium gas mixtures
- Author
-
Jose Repond, F.J. Mora, T.M. Stiegler, J. Pérez, I. J. Arnquist, C. Romo-Luque, C.A.N. Conde, A. Simón, C.M.B. Monteiro, J.M. Benlloch-Rodríguez, K. Hafidi, M. Kekic, A. Para, Y. Rodriguez Garcia, D. González-Díaz, M. Sorel, A.L. Ferreira, A.D. McDonald, G. Díaz, N. Yahlali, M. Querol, M. Losada, J. Muñoz Vidal, Sandra K. Johnston, D.R. Nygren, Romain Esteve, B. Al Atoum, B. Palmeiro, E. Church, C.D.R. Azevedo, G. Martínez-Lema, C. Sofka, J. Generowicz, F.I.G.M. Borges, M. Diesburg, K. Woodruff, L. Ripoll, J.T. White, V. Herrero, B. J. P. Jones, J. Haefner, J. Escada, B. Romeo, R. Felkai, F. Ballester, Roberto Gutiérrez, R. Weiss-Babai, J. S. Díaz, P. Novella, J. Renner, J. Martín-Albo, J.J. Gómez-Cadenas, L.M.P. Fernandes, R. Guenette, P. Herrero, A. Laing, J.F. Toledo, S. Cárcel, S. Riordan, P. Lebrun, A. Martínez, S. Cebrián, R. C. Webb, J.M.F. dos Santos, Paola Ferrario, C.A.O. Henriques, A. Goldschmidt, J. Hauptman, J. Torrent, K. Bailey, F.P. Santos, Javier Rodríguez, L. Rogers, A. Usón, Víctor H. Alvarez, J.F.C.A. Veloso, E.D.C. Freitas, Lior Arazi, F. Monrabal, J. V. Carrión, N. López-March, R.D.P. Mano, J.A. Hernando Morata, C. Adams, A.F.M. Fernandes, L. Labarga, Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), European Commission, and Generalitat Valenciana
- Subjects
Physics - Instrumentation and Detectors ,Materials science ,Drift velocity ,Physics::Instrumentation and Detectors ,Extrapolation ,FOS: Physical sciences ,chemistry.chemical_element ,Electron ,01 natural sciences ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,Xenon ,Electric field ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,Nuclear Experiment (nucl-ex) ,Diffusion (business) ,Nuclear Experiment ,Instrumentation ,Mathematical Physics ,Helium ,010308 nuclear & particles physics ,Instrumentation and Detectors (physics.ins-det) ,chemistry ,Atomic physics ,Bar (unit) - Abstract
We report new measurements of the drift velocity and longitudinal diffusion coefficients of electrons in pure xenon gas and in xenon-helium gas mixtures at 1-9 bar and electric field strengths of 50-300 V/cm. In pure xenon we find excellent agreement with world data at all $E/P$, for both drift velocity and diffusion coefficients. However, a larger value of the longitudinal diffusion coefficient than theoretical predictions is found at low $E/P$ in pure xenon, below the range of reduced fields usually probed by TPC experiments. A similar effect is observed in xenon-helium gas mixtures at somewhat larger $E/P$. Drift velocities in xenon-helium mixtures are found to be theoretically well predicted. Although longitudinal diffusion in xenon-helium mixtures is found to be larger than anticipated, extrapolation based on the measured longitudinal diffusion coefficients suggest that the use of helium additives to reduce transverse diffusion in xenon gas remains a promising prospect.
- Published
- 2019
10. High Pressure Gas Xenon TPCs for Double Beta Decay Searches
- Author
-
Francesc Monrabal Capilla, J. J. Gomez-Cadenas, and Paola Ferrario
- Subjects
topology ,Field (physics) ,Physics::Instrumentation and Detectors ,Materials Science (miscellaneous) ,Biophysics ,General Physics and Astronomy ,chemistry.chemical_element ,01 natural sciences ,electroluminescence ,Nuclear physics ,Xenon ,Double beta decay ,0103 physical sciences ,Physical and Theoretical Chemistry ,High pressure gas ,010306 general physics ,Mathematical Physics ,Physics ,neutrinos ,resolution ,lcsh:QC1-999 ,xenon ,Gas pressure ,chemistry ,barium tagging ,Neutrino ,lcsh:Physics - Abstract
This article reviews the application of high pressure gaseous xenon time projection chambers to neutrinoless double beta decay experiments. First, the fundamentals of the technology and the historical development of the field are discussed. Then, the state of the art is presented, including the prospects for the next generation of experiments with masses in the ton scale range.
- Published
- 2019
- Full Text
- View/download PDF
11. Electroluminescence TPCs at the thermal diffusion limit
- Author
-
A. Laing, M. Losada, C. Romo-Luque, F. Ballester, Paola Ferrario, Javier Rodríguez, N. López-March, J.M.F. dos Santos, D. González-Díaz, L. Rogers, Sandra K. Johnston, L. Ripoll, B. J. P. Jones, R.D.P. Mano, A. Para, R. Felkai, Jose Repond, J.A. Hernando Morata, M. Sorel, J.V. Carrión, D.R. Nygren, F.I.G.M. Borges, J.F.C.A. Veloso, E.D.C. Freitas, A.L. Ferreira, J.T. White, Roberto Gutiérrez, G. Martínez-Lema, M. Nebot-Guinot, S. Cebrián, J. S. Díaz, P. Novella, J. Martín-Albo, J.J. Gómez-Cadenas, Víctor H. Alvarez, R. C. Webb, Lior Arazi, J. Generowicz, Javier Pérez, R. Guenette, J.F. Toledo, S. Cárcel, C.M.B. Monteiro, P. Lebrun, A. Martínez, J. Muñoz Vidal, L. Labarga, A. Botas, F.P. Santos, M. R. Jorge, M. Diesburg, J. Escada, C. Adams, C. Sofka, J. Torrent, A.F.M. Fernandes, J.M. Benlloch-Rodríguez, F. Monrabal, M. Querol, C.D.R. Azevedo, C.A.N. Conde, A. Simón, M. Musti, S. Riordan, K. Hafidi, C.A.O. Henriques, A. Goldschmidt, J. Hauptman, Kevin Bailey, A.D. McDonald, F.J. Mora, T.M. Stiegler, L.M.P. Fernandes, F. Psihas, A.I. Hernandez, J. Renner, M. Kekic, N. Yahlali, Romain Esteve, B. Palmeiro, V. Herrero, UAM. Departamento de Física Teórica, European Commission, and Ministerio de Economía y Competitividad (España)
- Subjects
Electroluminiscència ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Dark Matter and Double Beta Decay ,FOS: Physical sciences ,chemistry.chemical_element ,Electron ,Atomic ,01 natural sciences ,7. Clean energy ,Mathematical Sciences ,High Energy Physics - Experiment ,TECNOLOGIA ELECTRONICA ,High Energy Physics - Experiment (hep-ex) ,Particle and Plasma Physics ,Xenon ,Ionization ,0103 physical sciences ,Dark Matter and Double Beta Decay (experiments) ,Nuclear ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Diffusion (business) ,010306 general physics ,Mathematical Physics ,Physics ,Quantum Physics ,010308 nuclear & particles physics ,Resolution (electron density) ,Molecular ,Física ,Nuclear energy ,Instrumentation and Detectors (physics.ins-det) ,Nuclear & Particles Physics ,Particle correlations and fluctuations ,85-05 ,Electroluminescence ,chemistry ,Rare decay ,Yield (chemistry) ,Photon production ,Physical Sciences ,Scintillation counter ,Energia nuclear ,lcsh:QC770-798 ,Atomic physics ,Energy (signal processing) - Abstract
Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAM, The NEXT experiment aims at searching for the hypothetical neutrinoless double-beta decay from the 136Xe isotope using a high-purity xenon TPC. Efficient discrimination of the events through pattern recognition of the topology of primary ionisation tracks is a major requirement for the experiment. However, it is limited by the diffusion of electrons. It is known that the addition of a small fraction of a molecular gas to xenon reduces electron diffusion. On the other hand, the electroluminescence (EL) yield drops and the achievable energy resolution may be compromised. We have studied the effect of adding several molecular gases to xenon (CO2, CH4 and CF4) on the EL yield and energy resolution obtained in a small prototype of driftless gas proportional scintillation counter. We have compared our results on the scintillation characteristics (EL yield and energy resolution) with a microscopic simulation, obtaining the diffusion coefficients in those conditions as well. Accordingly, electron diffusion may be reduced from about 10 mm/m for pure xenon down to 2.5 mm/m using additive concentrations of about 0.05%, 0.2% and 0.02% for CO2, CH4 and CF4, respectively. Our results show that CF4 admixtures present the highest EL yield in those conditions, but very poor energy resolution as a result of huge fluctuations observed in the EL formation. CH4 presents the best energy resolution despite the EL yield being the lowest. The results obtained with xenon admixtures are extrapolated to the operational conditions of the NEXT-100 TPC. CO2 and CH4 show potential as molecular additives in a large xenon TPC. While CO2 has some operational constraints, making it difficult to be used in a large TPC, CH4 shows the best performance and stability as molecular additive to be used in the NEXT-100 TPC, with an extrapolated energy resolution of 0.4% at 2.45 MeV for concentrations below 0.4%, which is only slightly worse than the one obtained for pure xenon. We demonstrate the possibility to have an electroluminescence TPC operating very close to the thermal diffusion limit without jeopardizing the TPC performance, if CO2 or CH4 are chosen as additives.[Figure not available: see fulltext.], The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union’s Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Skłodowska-Curie Grant Agreements No.674896, 690575 and 740055; the Ministerio de Economía y Competitividad of Spain under grants FIS2014-53371-C04, the Severo Ochoa Program SEV-2014-0398 and the María de Maetzu Program MDM-2016-0692;the GVA of Spain under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT under project PTDC/FIS-NUC/2525/2014, under project UID/FIS/04559/2013 to fund the activities of LIBPhys, and under grants PD/BD/105921/2014, SFRH/BPD/109180/2015 and SFRH/BPD/76842/2011; the U.S. Department of Energy under contracts number DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), DE-FG02-13ER42020(Texas A&M) and DE-SC0017721 (University of Texas at Arlington); and the University of Texas at Arlington. DGD acknowledges Ramon y Cajal program (Spain) under contract number RYC-2015-18820. We also warmly acknowledge the Laboratori Nazionalidel Gran Sasso (LNGS) and the Dark Side collaboration for their help with TPB coatingof various parts of the NEXT-White TPC.
- Published
- 2019
12. The Next White (NEW) detector
- Author
-
Jose Repond, J.V. Carrión, Sandra K. Johnston, M. Kekic, J.M. Benlloch-Rodríguez, A. Botas, R. Felkai, S. Riordan, L. Ripoll, B. J. P. Jones, J. Torrent, J. Generowicz, K. Hafidi, A. Laing, C.M.B. Monteiro, A. Goldschmidt, J. Hauptman, K. Bailey, L. Labarga, S. Cebrián, C.A.N. Conde, A. Simón, Roberto Gutiérrez, M. Musti, R. C. Webb, F. Monrabal, Javier Rodríguez, D. González-Díaz, J. S. Díaz, P. Novella, J. Martín-Albo, J.T. White, M. Diesburg, J.J. Gómez-Cadenas, Javier Pérez, J.F.C.A. Veloso, E.D.C. Freitas, J. Escada, L. Rogers, D.R. Nygren, G. Martínez-Lema, C.A.O. Henriques, Lior Arazi, C. Sofka, Paola Ferrario, J.M.F. dos Santos, M. Losada, N. López-March, A. Para, M. Sorel, C.D.R. Azevedo, C. Romo-Luque, A.L. Ferreira, R.D.P. Mano, M. Nebot-Guinot, J.A. Hernando Morata, Víctor H. Alvarez, F.P. Santos, A.I. Hernandez, J. Muñoz Vidal, A.D. McDonald, F.I.G.M. Borges, F.J. Mora, T.M. Stiegler, R. Guenette, J.F. Toledo, S. Cárcel, P. Lebrun, A. Martínez, L.M.P. Fernandes, J. Renner, B. Palmeiro, V. Herrero, N. Yahlali, Romain Esteve, M. Querol, C. Adams, and A.F.M. Fernandes
- Subjects
Physics - Instrumentation and Detectors ,Xenon ,010308 nuclear & particles physics ,European research ,Library science ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,7. Clean energy ,01 natural sciences ,High-pressure xenon chambers ,TECNOLOGIA ELECTRONICA ,Time Projection Chamber (TPC) ,Political science ,0103 physical sciences ,media_common.cataloged_instance ,European union ,Neutrinoless double beta decay ,010306 general physics ,Instrumentation ,Mathematical Physics ,media_common ,NEXT-100 experiment - Abstract
[EN] Conceived to host 5 kg of xenón at a pressure of 15 bar in the ¿ducial volume,the NEXTWhite (NEW)apparatus is currently the largest high pressure xenon gas TPC using electroluminescent ampli¿cation in the world. It is also a 1:2 scale model of the NEXT-100 detector scheduled to start searching for ßß0¿ decays in 136Xe in 2019. Both detectors measure the energy of the event using a plane of photomultipliers located behind a transparent cathode. They can also reconstruct the trajectories of charged tracks in the dense gas of the TPC with the help of a plane of silicon photomultipliers located behind the anode. A sophisticated gas system, common to both detectors, allows the high gas purity needed to guarantee a long electron lifetime. NEXT-White has been operating since October 2017 at the Canfranc Underground Laboratory (LSC), in Spain. This paper describes the detector and associated infrastructures., The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union's Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreements No. 674896, 690575 and 740055; the Ministerio de Economia y Competitividad of Spain under grants FIS2014-53371-C04, the Severo Ochoa Program SEV-2014-0398 and the Maria de Maetzu Program MDM-2016-0692; the GVA of Spain under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT and FEDER through the program COMPETE, projects PTDC/FIS-NUC/2525/2014 and UID/FIS/04559/2013; the U.S. Department of Energy under contract numbers DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), DE-FG02-13ER42020 (Texas A&M), DE-SC0017721 (University of Texas at Arlington), and DE-AC02-06CH11357 (Argonne National Laboratory); and the University of Texas at Arlington. We also warmly acknowledge the Laboratorio Nazionale di Gran Sasso (LNGS) and the Dark Side collaboration for their help with TPB coating of various parts of the NEXT-White TPC. Finally, we are grateful to the Laboratorio Subterraneo de Canfranc for hosting and supporting the NEXT experiment.
- Published
- 2018
13. Application of scintillating properties of liquid xenon and silicon photomultiplier technology to medical imaging
- Author
-
J.M. Benlloch-Rodríguez, Paola Ferrario, and J.J. Gómez-Cadenas
- Subjects
Scintillation ,Materials science ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,business.industry ,Detector ,chemistry.chemical_element ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,030218 nuclear medicine & medical imaging ,Analytical Chemistry ,03 medical and health sciences ,0302 clinical medicine ,Silicon photomultiplier ,Xenon ,Optics ,chemistry ,0103 physical sciences ,Medical imaging ,Positron emission ,business ,Cell shape ,Instrumentation ,Image resolution ,Spectroscopy - Abstract
We describe a new positron emission time-of-flight apparatus using liquid xenon. The detector is based in a liquid xenon scintillating cell. The cell shape and dimensions can be optimized depending on the intended application. In its simplest form, the liquid xenon scintillating cell is a box in which two faces are covered by silicon photomultipliers and the others by a reflecting material such as Teflon. It is a compact, homogenous and highly efficient detector which shares many of the desirable properties of monolithic crystals, with the added advantage of high yield and fast scintillation offered by liquid xenon. Our initial studies suggest that good energy and spatial resolution comparable with that achieved by lutetium oxyorthosilicate crystals can be obtained with a detector based in liquid xenon scintillating cells. In addition, the system can potentially achieve an excellent coincidence resolving time of better than 100 ps.
- Published
- 2016
- Full Text
- View/download PDF
14. Mitigation of backgrounds from cosmogenic 137 Xe in xenon gas experiments using 3 He neutron capture
- Author
-
A. Usón, Víctor H. Alvarez, L. Labarga, J. Torrent, Sandra K. Johnston, K. Bailey, J. Haefner, M. Sorel, R.D.P. Mano, P. Lebrun, T. Contreras, C.A.O. Henriques, P. Herrero, Y. Ifergan, J. Generowicz, A.L. Ferreira, Javier Rodríguez, G. Díaz, J.F.C.A. Veloso, E.D.C. Freitas, B. Palmeiro, M. Diesburg, M. Querol, Jose Repond, J. Escada, F.J. Mora, J. M. Benlloch-Rodríguez, J.V. Carrión, L. Rogers, F. Monrabal, Lior Arazi, Javier Pérez, C.M.B. Monteiro, C. Adams, T.M. Stiegler, Diego González-Díaz, G. Martínez-Lema, Y. Rodriguez Garcia, J. A. Hernando Morata, R. Felkai, L.M.P. Fernandes, A.F.M. Fernandes, A. Goldschmidt, C. Sofka, Sudip Ghosh, S. Cebrián, B. Romeo, M. Kekic, C.D.R. Azevedo, E. Church, C.A.N. Conde, P. Novella, A.B. Redwine, F.I.G.M. Borges, R. M. Gutiérrez, J. Martín-Albo, N. Lopez-March, R. C. Webb, J.J. Gómez-Cadenas, N. Byrnes, F.P. Santos, A.D. McDonald, J. Muñoz Vidal, K. Woodruff, D. R. Nygren, R. Weiss-Babai, J. T. White, J. Renner, J. M. Hauptman, A. Laing, N. Yahlali, Romain Esteve, M. Losada, R. Dingler, V. Herrero, F. Ballester, Paola Ferrario, I. J. Arnquist, R. Guenette, B. Smithers, J.F. Toledo, S. Cárcel, S. Riordan, A. Martínez, L. Ripoll, B. J. P. Jones, S. Pingulkar, J.M.F. dos Santos, J. Díaz, A. Para, K. Hafidi, A. Simón, C. Romo-Luque, and UAM. Departamento de Física Teórica
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Scintillation and light emission processes ,Gas and liquid scintillators ,FOS: Physical sciences ,chemistry.chemical_element ,01 natural sciences ,7. Clean energy ,High Energy Physics - Experiment ,TECNOLOGIA ELECTRONICA ,Nuclear physics ,Gaseous detectors ,Solid ,High Energy Physics - Experiment (hep-ex) ,Xenon ,Double beta decay ,0103 physical sciences ,Isotopes of xenon ,Spallation ,Neutron ,010306 general physics ,Physics ,010308 nuclear & particles physics ,Física ,Instrumentation and Detectors (physics.ins-det) ,Beta Decay ,Neutron temperature ,Neutron capture ,chemistry ,Scintillators ,Radioactive decay - Abstract
[EN] Xe-136 is used as the target medium for many experiments searching for 0 nu beta beta. Despite underground operation, cosmic muons that reach the laboratory can produce spallation neutrons causing activation of detector materials. A potential background that is difficult to veto using muon tagging comes in the form of Xe-137 created by the capture of neutrons on Xe-136. This isotope decays via beta decay with a half-life of 3.8 min and a Q(beta) of similar to 4.16 MeV. This work proposes and explores the concept of adding a small percentage of He-3 to xenon as a means to capture thermal neutrons and reduce the number of activations in the detector volume. When using this technique we find the contamination from Xe-137 activation can be reduced to negligible levels in tonne and multi-tonne scale high pressure gas xenon neutrinoless double beta decay experiments running at any depth in an underground laboratory., The work described was supported by the Department of Energy under Award numbers DE-SC0019054 and DE-SC0019223. The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union's Framework Program for Research and Innovation Horizon 2020 (2014-2020) under the Marie Skodowska-Curie Grant Agreements No. 674896, 690575 and 740055; the Ministerio de Economia y Competitividad of Spain under grants FIS2014-53371-C04, the Severo Ochoa Program SEV-2014-0398 and the Maria de Maetzu Program MDM-2016-0692; the GVA of Spain under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT under project PTDC/FIS-NUC/2525/2014, under project UID/FIS/04559/2013 to fund the activities of LIBPhys, and under grants PD/BD/105921/2014, SFRH/BPD/109180/2015 and SFRH/BPD/76842/2011. Finally, we are grateful to the Laboratorio Subterraneo de Canfranc for hosting and supporting the NEXT experiment.
- Published
- 2020
- Full Text
- View/download PDF
15. PETALO read-out: A novel approach for data acquisition systems in PET applications
- Author
-
Romain Esteve, Ramón J. Aliaga, F. Ballester, J.F. Toledo, V. Herrero-Bosch, R. Gadea, Paola Ferrario, R. Torres-Curado, Javier Rodríguez, and J.J. Gómez-Cadenas
- Subjects
Scanner ,Scintillation ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Computer science ,Physics::Medical Physics ,Detector ,Bandwidth (signal processing) ,FOS: Physical sciences ,chemistry.chemical_element ,Instrumentation and Detectors (physics.ins-det) ,01 natural sciences ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,Time of flight ,0302 clinical medicine ,Data acquisition ,Xenon ,chemistry ,0103 physical sciences ,Electronic engineering ,Electronics - Abstract
PETALO (a Positron Emission Tof Apparatus based on Liquid xenOn) is a new approach for Positron Emission Tomography scanners, based on liquid xenon. The PETALO detector aims at capturing the light produced by the scintillation in LXe taking advantage of its uniform response and continuity. This strategy will lead to a geometrical distortion free behavior compared to other PET detectors. To this end, the sensors chosen for the light readout are SiPMs, which provide large area, high gain and very low noise. In order to take advantage of the unique PETALO detector characteristics a read-out architecture must be designed to meet the following specifications: Electronics associated to detector (front-end and read-out itself) must be fully expandable in terms of detector size. Read-out scheme must be compatible with the non-segmented structure of the detector. Time of Flight (TOF) capabilities must be assured at the scanner level, that is to say front-end and read-out electronics should not degrade LXe time performance. In these proceedings, a new readout concept is introduced which is compatible with a fully continuous medium detector such as PETALO. Results show that the system is feasible, with the introduction of a fast compression technique to further reduce the data bandwidth requirements.
- Published
- 2018
- Full Text
- View/download PDF
16. Initial results on energy resolution of the NEXT-White detector
- Author
-
L. Labarga, J. S. Díaz, P. Novella, N. Yahlali, J. Martín-Albo, J.J. Gómez-Cadenas, F. Ballester, G. Martínez-Lema, Romain Esteve, S. Cebrián, Jose Repond, R. C. Webb, Sandra K. Johnston, Paola Ferrario, L. Rogers, J.V. Carrión, R. Guenette, N. López-March, M. Losada, J.F. Toledo, S. Cárcel, C. Sofka, P. Lebrun, R.D.P. Mano, A. Martínez, F.P. Santos, Jose A. Rodriguez, Kevin Bailey, A.D. McDonald, J.M. Benlloch-Rodríguez, M. Kekic, J.A. Hernando Morata, C. Romo-Luque, C.M.B. Monteiro, J.F.C.A. Veloso, E.D.C. Freitas, J. Muñoz Vidal, Víctor H. Alvarez, A.I. Hernandez, F. Psihas, Diego González-Díaz, A. Laing, F.J. Mora, T.M. Stiegler, B. Palmeiro, Lior Arazi, C.A.O. Henriques, R. Felkai, C.D.R. Azevedo, M. Diesburg, F.I.G.M. Borges, A. Botas, S. Riordan, A. Para, J. Escada, M. Sorel, L.M.P. Fernandes, F. Monrabal, D.R. Nygren, A.L. Ferreira, K. Hafidi, V. Herrero, M. Nebot-Guinot, A. Goldschmidt, J. Hauptman, J.M.F. dos Santos, C.A.N. Conde, Javier Pérez, A. Simón, J. Renner, M. Musti, L. Ripoll, B. J. P. Jones, J. Torrent, J. Generowicz, Roberto Gutiérrez, M. Querol, C. Adams, A.F.M. Fernandes, and J.T. White
- Subjects
High energy ,Physics - Instrumentation and Detectors ,Time projection chambers ,chemistry.chemical_element ,FOS: Physical sciences ,01 natural sciences ,Xenon ,Optics ,Engineering ,Affordable and Clean Energy ,0103 physical sciences ,010306 general physics ,Instrumentation ,Mathematical Physics ,Large detector-systems performance ,Physics ,010308 nuclear & particles physics ,business.industry ,Detector ,Resolution (electron density) ,Linearity ,Instrumentation and Detectors (physics.ins-det) ,Double-beta decay detectors ,Nuclear & Particles Physics ,Other Physical Sciences ,Full width at half maximum ,chemistry ,High pressure ,Physical Sciences ,Analysis and statistical methods ,business ,Energy (signal processing) - Abstract
One of the major goals of the NEXT-White (NEW) detector is to demonstrate the energy resolution that an electroluminescent high pressure xenon TPC can achieve for high energy tracks. For this purpose, energy calibrations with 137Cs and 232Th sources have been carried out as a part of the long run taken with the detector during most of 2017. This paper describes the initial results obtained with those calibrations, showing excellent linearity and an energy resolution that extrapolates to approximately 1% FWHM at Q$_{\beta\beta}$., Comment: 14 pages, 8 figures, Accepted for publication in JINST
- Published
- 2018
17. High Voltage Insulation and Gas Absorption of Polymers in High Pressure Argon and Xenon Gases
- Author
-
Javier Pérez, F.I.G.M. Borges, Roberto Gutiérrez, N. López-March, C. Sofka, S. Cebrián, R. C. Webb, C. Romo-Luque, J. Torrent, Vicente Herrero, J.M.F. dos Santos, K. Bailey, A. Goldschmidt, C.A.N. Conde, R. Guenette, J.F. Toledo, S. Cárcel, A. Laing, J. M. Hauptman, L. Ripoll, R.D.P. Mano, Romain Esteve, B. J. P. Jones, F. Psihas, C.D.R. Azevedo, J.M. Benlloch-Rodríguez, A. Simón, M. Sorel, M. Musti, N. Yahlali, A.L. Ferreira, F. Monrabal, F. Ballester, J.F.C.A. Veloso, E.D.C. Freitas, B. Palmeiro, J. A. Hernando Morata, L.M.P. Fernandes, Paola Ferrario, J. Muñoz Vidal, M. Nebot-Guinot, F.P. Santos, D.R. Nygren, R. Felkai, P. Lebrun, G. Martínez-Lema, D. González-Díaz, J. S. Díaz, P. Novella, A. Para, K. Hafidi, M. Kekic, Lior Arazi, J. Martín-Albo, J.J. Gómez-Cadenas, M. Diesburg, A. Botas, J. Escada, L. Labarga, Jose Repond, Javier Rodríguez, J.V. Carrión, Víctor H. Alvarez, S. Riordan, Ana Martínez, L. Rogers, C.A.O. Henriques, J. Generowicz, Sandra K. Johnston, M. Querol, C.M.B. Monteiro, C. Adams, A.F.M. Fernandes, Richard A.F. Clark, A.I. Hernandez, J. T. White, J. Renner, M. Losada, A.D. McDonald, F.J. Mora, and T.M. Stiegler
- Subjects
Materials science ,Argon ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,FOS: Physical sciences ,chemistry.chemical_element ,Noble gas ,High voltage ,Instrumentation and Detectors (physics.ins-det) ,01 natural sciences ,Characterization (materials science) ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Xenon ,chemistry ,0103 physical sciences ,Peek ,Surface charge ,Nuclear Experiment (nucl-ex) ,Absorption (chemistry) ,Composite material ,010306 general physics ,Instrumentation ,Nuclear Experiment ,Mathematical Physics - Abstract
High pressure gas time projection chambers (HPGTPCs) are made with a variety of materials, many of which have not been well characterized in high pressure noble gas environments. As HPGTPCs are scaled up in size toward ton-scale detectors, assemblies become larger and more complex, creating a need for detailed understanding of how structural supports and high voltage insulators behave. This includes the identification of materials with predictable mechanical properties and without surface charge accumulation that may lead to field deformation or sparking. This paper explores the mechanical and electrical effects of high pressure gas environments on insulating polymers PTFE, HDPE, PEEK, POM and UHMW in Argon and Xenon, including studying absorption, swelling and high voltage insulation strength., Prepared for JINST v2: Fix initial submit problem v3: Submitted to journal
- Published
- 2018
18. Measurement of radon-induced backgrounds in the NEXT double beta decay experiment
- Author
-
G. Martínez-Lema, Javier Pérez, R. Guenette, J.F. Toledo, F. Monrabal, M. Diesburg, S. Cárcel, P. Lebrun, J. Escada, A. Para, M. Sorel, A.L. Ferreira, A. Martínez, M. Nebot-Guinot, C.D.R. Azevedo, L. Labarga, F. Ballester, Paola Ferrario, M. Losada, Sandra K. Johnston, J.M. Benlloch-Rodríguez, N. López-March, J. Torrent, F.P. Santos, C. Romo-Luque, J.M.F. dos Santos, K. Bailey, S. Riordan, F.I.G.M. Borges, R.D.P. Mano, A.D. McDonald, D.R. Nygren, J.A. Hernando Morata, J.T. White, Vicente Herrero, A. Goldschmidt, J. Hauptman, A. Botas, A. Laing, J. Generowicz, F. Psihas, C. Sofka, J. Martíın-Albo, C.A.N. Conde, L. Ripoll, C. Adams, B. J. P. Jones, A. Simón, J.F.C.A. Veloso, E.D.C. Freitas, F.J. Mora, A.F.M. Fernandes, M. Musti, Víctor H. Alvarez, T.M. Stiegler, D. González-Díaz, J. S. Díaz, P. Novella, C.M.B. Monteiro, Lior Arazi, Roberto Gutiérrez, J.J. Gómez-Cadenas, Javier Rodríguez, L.M.P. Fernandes, C.A.O. Henriques, R. Felkai, K. Hafidi, Jose Repond, L. Rogers, J.V. Carrión, M. Querol, J. Muñoz Vidal, S. Cebrián, R. C. Webb, M. Kekic, N. Yahlali, Romain Esteve, B. Palmeiro, A.I. Hernandez, J. Renner, G. Zuzel, Universidade de Santiago de Compostela. Departamento de Física de Partículas, and Universidade de Santiago de Compostela. Instituto Galego de Física de Altas Enerxías (IGFAE)
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Nuclear physics ,FOS: Physical sciences ,chemistry.chemical_element ,Radon ,Electron ,01 natural sciences ,Atomic ,Mathematical Sciences ,High Energy Physics - Experiment ,law.invention ,Ion ,High Energy Physics - Experiment (hep-ex) ,Xenon ,Particle and Plasma Physics ,law ,Double beta decay ,0103 physical sciences ,Dark Matter and Double Beta Decay (experiments) ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Nuclear ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Mathematical Physics ,Physics ,Quantum Physics ,Time projection chamber ,010308 nuclear & particles physics ,Detector ,Molecular ,Instrumentation and Detectors (physics.ins-det) ,Nuclear & Particles Physics ,Cathode ,Doble desintegració beta ,chemistry ,Physical Sciences ,lcsh:QC770-798 ,Física nuclear - Abstract
The measurement of the internal $^{222}$Rn activity in the NEXT-White detector during the so-called Run-II period with $^{136}$Xe-depleted xenon is discussed in detail, together with its implications for double beta decay searches in NEXT. The activity is measured through the alpha production rate induced in the fiducial volume by $^{222}$Rn and its alpha-emitting progeny. The specific activity is measured to be $(38.1\pm 2.2~\mathrm{(stat.)}\pm 5.9~\mathrm{(syst.)})$~mBq/m$^3$. Radon-induced electrons have also been characterized from the decay of the $^{214}$Bi daughter ions plating out on the cathode of the time projection chamber. From our studies, we conclude that radon-induced backgrounds are sufficiently low to enable a successful NEXT-100 physics program, as the projected rate contribution should not exceed 0.1~counts/yr in the neutrinoless double beta decay sample., Comment: 28 pages, 10 figures, 6 tables. Version accepted for publication in JHEP
- Published
- 2018
19. PETALO: Time-of-Flight PET with liquid xenon
- Author
-
J.J. Gómez-Cadenas, V. Herrero-Bosch, Carmen Romo-Luque, Paola Ferrario, and J.M. Benlloch-Rodríguez
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Monte Carlo method ,chemistry.chemical_element ,FOS: Physical sciences ,01 natural sciences ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,Optics ,Silicon photomultiplier ,Xenon ,0103 physical sciences ,Cherenkov radiation ,Physics ,Scintillation ,010308 nuclear & particles physics ,business.industry ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Physics - Medical Physics ,3. Good health ,Time of flight ,chemistry ,Picosecond ,Medical Physics (physics.med-ph) ,business - Abstract
The fast scintillation decay time and the high scintillation yield of liquid xenon makes it an appropriate material for nuclear medicine. Moreover, being a continuous medium with a uniform response, liquid xenon allows one to avoid most of the geometrical distortions of conventional detectors based on scintillating crystals. In this paper, we describe how these properties have motivated the development of a novel concept for positron emission tomography scanners with Time-Of-Flight measurement, which uses liquid xenon as a scintillating material and silicon photomultipliers as sensors. Monte Carlo studies have indicated that this technology would provide a very good intrinsic time resolution, of around 70 ps. Moreover, being liquid xenon transparent to UV and blue wavelengths, both scintillation and Cherenkov light can be exploited. While the former can be used for energy measurements, the latter is a prompt signal (of a few picoseconds), which provides a very precise time measurement. Monte Carlo simulations point to a time resolution of 30-50 ps obtained using Cherenkov light. A first prototype is being built to demonstrate the high energy, spatial and time resolution of this concept, using a ring of around 30 cm of internal diameter and a depth of 3 cm instrumented with VUV--sensitive silicon photomultipliers., Comment: arXiv admin note: text overlap with arXiv:1712.05751
- Published
- 2018
- Full Text
- View/download PDF
20. Calibration of the NEXT-White detector using 83m Kr decays
- Author
-
N. Yahlali, R. Felkai, C.D.R. Azevedo, Sandra K. Johnston, J. Renner, D. González-Díaz, Romain Esteve, A. Botas, C. Adams, A.F.M. Fernandes, J.T. White, J. Generowicz, M. Querol, S. Riordan, R. Guenette, J.F. Toledo, S. Cárcel, J. Torrent, Roberto Gutiérrez, P. Lebrun, A.D. McDonald, A. Martínez, C. Sofka, C.A.N. Conde, C.M.B. Monteiro, L.M.P. Fernandes, A. Simón, K. Bailey, A. Goldschmidt, J. Muñoz Vidal, J. Rodríguez, A. Para, J. Hauptman, Víctor H. Alvarez, C. Romo-Luque, M. Sorel, V. Herrero, F.P. Santos, A.L. Ferreira, B. Palmeiro, D.R. Nygren, M. Kekic, F.J. Mora, M. Diesburg, F. Monrabal, F.I.G.M. Borges, T.M. Stiegler, J. Escada, G. Martínez-Lema, J. Pérez, C.A.O. Henriques, J. V. Carrión, L. Rogers, S. Cebrián, R. C. Webb, J.M. Benlloch-Rodríguez, K. Hafidi, M. Nebot-Guinot, Jose Repond, F. Ballester, M. Musti, J. S. Díaz, P. Novella, J. Martín-Albo, J.J. Gómez-Cadenas, J.M.F. dos Santos, L. Ripoll, B. J. P. Jones, L. Labarga, M. Losada, N. López-March, R.D.P. Mano, J.A. Hernando Morata, J.F.C.A. Veloso, E.D.C. Freitas, A. Laing, Lior Arazi, Paola Ferrario, and A.I. Hernandez
- Subjects
Physics ,Time projection chamber ,010308 nuclear & particles physics ,Krypton ,Detector ,Solid angle ,chemistry.chemical_element ,01 natural sciences ,Nuclear physics ,Full width at half maximum ,Xenon ,chemistry ,Double beta decay ,0103 physical sciences ,Calibration ,010306 general physics ,Instrumentation ,Mathematical Physics - Abstract
The NEXT-White (NEW) detector is currently the largest radio-pure high-pressure xenon gas time projection chamber with electroluminescent readout in the world. It has been operating at Laboratorio Subterr'aneo de Canfranc (LSC) since October 2016. This paper describes the calibrations performed using 83mKr decays during a long run taken from March to November 2017 (Run II). Krypton calibrations are used to correct for the finite drift-electron lifetime as well as for the dependence of the measured energy on the event transverse position which is caused by variations in solid angle coverage both for direct and reflected light and edge effects. After producing calibration maps to correct for both effects we measure an excellent energy resolution for 41.5 keV point-like deposits of (4.553 ± 0.010 (stat) ± 0.324 (sys))% FWHM in the full chamber and (3.804 ± 0.013 (stat) ± 0.112 (sys))% FWHM in a restricted fiducial volume. Using naive 1/E scaling, these values translate into resolutions of (0.5916 ± 0.0014 (stat) ± 0.0421 (sys))% FWHM and (0.4943 ± 0.0017 (stat) ± 0.0146 (sys))% FWHM at the Qββ energy of xenon double beta decay (2458 keV), well within range of our target value of 1%.
- Published
- 2018
- Full Text
- View/download PDF
21. The NEXT double beta decay experiment
- Author
-
Paola Ferrario
- Subjects
Physics ,Scintillation ,Physics - Instrumentation and Detectors ,Time projection chamber ,010308 nuclear & particles physics ,business.industry ,FOS: Physical sciences ,chemistry.chemical_element ,Instrumentation and Detectors (physics.ins-det) ,7. Clean energy ,01 natural sciences ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Silicon photomultiplier ,Xenon ,Optics ,chemistry ,Double beta decay ,Ionization ,0103 physical sciences ,Neutrino ,010306 general physics ,business ,Energy (signal processing) - Abstract
NEXT (Neutrino Experiment with a Xenon TPC) aims to observe the neutrinoless double beta decay of \ensuremath{{}^{136}\rm Xe} in a high-pressure gas xenon Time Projection Chamber using electroluminescence to amplify the signal from ionization. The two main advantages of this technology are a high energy resolution and the possibility of reconstructing electron tracks. NEXT-100 is an electroluminescent, asymmetric TPC which will host 100 kg of the \ensuremath{{}^{136}\rm Xe} isotope at 15 bar of pressure. On one side, a sparse array of photomultipliers records both the primary scintillation signal, which gives the starting time of the event, and electroluminescence, which gives a precise measurement of the total deposited energy. On the other side, a dense grid of silicon photomultipliers provides the reconstruction of the electron tracks. Being able to reconstruct the position of a track is doubly useful: on the one hand, it allows the correction of the energy of the event, which varies according to position, and on the other hand it provides an extra handle for background rejection, since a two-electron track shows higher energy density at both ends, while a single-electron track only at one end. After a prototyping period (2009-2014) NEXT has completed the construction and started the operation of its first phase (NEW) in the Laboratorio Subterr\'aneo de Canfranc, in the Spanish Pyrenees, with the objectives of measuring the NEXT background model and the two-neutrino mode of the double beta decay., Comment: Proceedings of EPS-HEP 2017, Venice (Italy), July 2017
- Published
- 2017
- Full Text
- View/download PDF
22. Radiopurity assessment of the energy readout for the NEXT double beta decay experiment
- Author
-
J. Martin-Albo, F. Monrabal, B. Palmeiro, D. González-Díaz, J. S. Díaz, P. Novella, L.M.P. Fernandes, J.J. Gómez-Cadenas, I. C. Bandac, C.A.O. Henriques, C.A.N. Conde, A. Simón, M. Musti, A. Botas, A.D. McDonald, J.F.C.A. Veloso, A. Goldschmidt, J. Hauptman, R. Felkai, E.D.C. Freitas, L.M. Moutinho, J. Torrent, N. Yahlali, A.I. Hernandez, J.M.F. dos Santos, S. Cebrián, F.I.G.M. Borges, M. Querol, Javier Pérez, A. Para, R. C. Webb, Romain Esteve, J. Muñoz Vidal, M. Sorel, A.L. Ferreira, Z. Tsamalaidze, A. Laing, F.J. Mora, T.M. Stiegler, M. Nebot-Guinot, D.R. Nygren, Roberto Gutiérrez, S. Cárcel, I. Liubarsky, P. Lebrun, p J. F. Toledo, A. Martínez, G. Martínez-Lema, J. Renner, C. Sofka, F.P. Santos, Paola Ferrario, o J. Rodríguez, M. Losada, J.M. Benlloch-Rodríguez, N. López-March, L. Rogers, Vicente Herrero, C.M.B. Monteiro, J.A. Hernando Morata, L. Ripoll, L. Labarga, B. J. P. Jones, M. Diesburg, J. Escada, J.T. White, C.D.R. Azevedo, José Villar, J.V. Carrión, and Víctor H. Alvarez
- Subjects
Photomultiplier ,Physics - Instrumentation and Detectors ,Time projection chambers ,chemistry.chemical_element ,FOS: Physical sciences ,Tracking (particle physics) ,7. Clean energy ,01 natural sciences ,High Energy Physics - Experiment ,Nuclear physics ,TECNOLOGIA ELECTRONICA ,High Energy Physics - Experiment (hep-ex) ,Xenon ,Double beta decay ,0103 physical sciences ,Sensitivity (control systems) ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Instrumentation ,Nuclear Experiment ,Mathematical Physics ,Physics ,010308 nuclear & particles physics ,Detector ,Gamma detectors (scintillators, CZT, HPG, HgI etc) ,Instrumentation and Detectors (physics.ins-det) ,Double-beta decay detectors ,chemistry ,Search for radioactive and fissile materials ,Neutrino ,Energy (signal processing) - Abstract
[EN] The "Neutrino Experiment with a Xenon Time-Projection Chamber" (NEXT) experiment intends to investigate the neutrinoless double beta decay of 136Xe, and therefore requires a severe suppression of potential backgrounds. An extensive material screening and selection process was undertaken to quantify the radioactivity of the materials used in the experiment. Separate energy and tracking readout planes using different sensors allow us to combine the measurement of the topological signature of the event for background discrimination with the energy resolution optimization. The design of radiopure readout planes, in direct contact with the gas detector medium, was especially challenging since the required components typically have activities too large for experiments demanding ultra-low background conditions. After studying the tracking plane, here the radiopurity control of the energy plane is presented, mainly based on gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterráneo de Canfranc (Spain). All the available units of the selected model of photomultiplier have been screened together with most of the components for the bases, enclosures and windows. According to these results for the activity of the relevant radioisotopes, the selected components of the energy plane would give a contribution to the overall background level in the region of interest of at most 2.4 × 10¿4 counts per keV, kg and year, satisfying the sensitivity requirements of the NEXT experiment., Special thanks are due to LSC directorate and staff for their strong support for performing the measurements at the LSC Radiopurity Service. We are really grateful to Grzegorz Zuzel for the radon emanation measurements. The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the Ministerio de Economia y Competitividad of Spain under grants FIS2014-53371-C04 and the Severo Ochoa Program SEV-2014-0398; the GVA of Spain under grant PROMETEO/2016/120; the Portuguese FCT and FEDER through the program COMPETE, project PTDC/FIS/103860/2008; the U.S. Department of Energy under contracts number DE-AC02-07CH11359 (Fermi National Accelerator Laboratory) and DE-FG02-13ER42020 (Texas A & and the University of Texas at Arlington.
- Published
- 2017
23. Microscopic simulation of xenon-based optical TPCs in the presence of molecular additives
- Author
-
J. Muñoz Vidal, Roberto Gutiérrez, I. Liubarsky, L.M.P. Fernandes, N. Yahlali, J.V. Carrión, J.F.C.A. Veloso, E.D.C. Freitas, L. Ripoll, A. Para, M. Sorel, A.L. Ferreira, B. J. P. Jones, A. Goldschmidt, Romain Esteve, J. Martin-Albo, J. Hauptman, M. Nebot-Guinot, C.D.R. Azevedo, A.D. McDonald, S. Biagi, Javier Rodríguez, F. Monrabal, D. Shuman, L.M. Moutinho, Luis M. Serra, J. Torrent, Carlos R. Oliveira, B. Palmeiro, J Pérez, N. López-March, L. Rogers, C. Sofka, C.M.B. Monteiro, Diego González-Díaz, J.A. Hernando Morata, J.M. Benlloch-Rodríguez, C.A.O. Henriques, A.I. Hernandez, J.M.F. dos Santos, J.T. White, F.P. Santos, V. Herrero, J. S. Díaz, L. Labarga, S. Cebrián, R. Felkai, P. Novella, R. C. Webb, J.J. Gómez-Cadenas, J. Renner, F.I.G.M. Borges, F.J. Mora, Víctor H. Alvarez, T.M. Stiegler, J.F. Toledo, S. Cárcel, P. Lebrun, A. Martínez, A. Botas, M. Diesburg, J. Escada, A. Laing, Paola Ferrario, M. Losada, D.R. Nygren, G. Martínez-Lema, Z. Tsamalaidze, M. Querol, C.A.N. Conde, A. Simón, M. Musti, Uludağ Üniversitesi/Fen - Edebiyat Fakültesi/Fizik Bölümü., and Biagi, Stephen F.
- Subjects
Xenon ,Physics - Instrumentation and Detectors ,Nuclear science & technology ,Physics::Instrumentation and Detectors ,Electron cooling ,Electron ,Microscopic simulation ,Rate constans ,01 natural sciences ,Optical TPCs ,Molecular additives ,Radiative transfer ,Physics, nuclear ,Detectors and Experimental Techniques ,Instrumentation ,physics.ins-det ,Xenon scintillation ,Scintillation ,Detectors de radiació ,Physics ,Quenching ,Range (particle radiation) ,Gaseous electronics ,Instrumentation and Detectors (physics.ins-det) ,Nuclear physics -- Instruments ,Cascade ,Nuclear counters ,Gas ,Excited state ,Collisional deactivation ,Physics, particles & fields ,Atomic physics ,Instruments & instrumentation ,Secondary scintillation yield ,Electronic cooling ,Nuclear and High Energy Physics ,Atoms ,Reaction rates ,FOS: Physical sciences ,chemistry.chemical_element ,Física nuclear -- Instruments ,Electrons ,Molecular quenchers ,Energy-transfer ,TECNOLOGIA ELECTRONICA ,Emission ,0103 physical sciences ,Physics::Atomic and Molecular Clusters ,Resonance radiation ,Argon ,010306 general physics ,High-pressure xenon ,010308 nuclear & particles physics ,Beta Decay ,Molecules ,High pressure ,chemistry ,Electroluminescence - Abstract
[EN] We introduce a simulation framework for the transport of high and low energy electrons in xenon-based optical time projection chambers (OTPCs). The simulation relies on elementary cross sections (electron-atom and electron-molecule) and incorporates, in order to compute the gas scintillation, the reaction/quenching rates (atom-atom and atom-molecule) of the first 41 excited states of xenon and the relevant associated excimers, together with their radiative cascade. The results compare positively with observations made in pure xenon and its mixtures with CO2 and CF4 in a range of pressures from 0.1 to 10 bar. This work sheds some light on the elementary processes responsible for the primary and secondary xenon-scintillation mechanisms in the presence of additives, that are of interest to the OTPC technology., DGD is supported by the Ramon y Cajal program (Spain) under contract number RYC-2015-18820. The authors want to acknowledge the RD51 collaboration for encouragement and support during the elaboration of this work, and in particular discussions with F. Resnati, A. Milov, V. Peskov, M. Suzuki and A. F. Borghesani. The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the Ministerio de Economia y Competitividad of Spain under grants FIS2014-53371-C04 and the Severo Ochoa Program SEV-2014-0398; the GVA of Spain under grant PROM-ETEO/2016/120; the Portuguese FCT and FEDER through the program COMPETE, project PTDC/FIS-NUC/2525/2014 and UID/FIS/04559/2013; the U.S. Department of Energy under contracts number DE-AC02-07CH11359 (Fermi National Accelerator Laboratory) and DE-FG02-13ER42020 (Texas A& and the University of Texas at Arlington.
- Published
- 2017
24. Secondary scintillation yield of xenon with sub-percent levels of CO2 additive for rare-event detection
- Author
-
A. Goldschmidt, J. Hauptman, J.T. White, F.P. Santos, M. Querol, C.A.N. Conde, A. Simón, C.M.B. Monteiro, Diego González-Díaz, D.R. Nygren, M. Musti, J. S. Díaz, P. Novella, J. Martín-Albo, N. Yahlali, F.I.G.M. Borges, J.J. Gómez-Cadenas, Javier Rodríguez, C.A.O. Henriques, Romain Esteve, G. Martínez-Lema, A. Para, N. López-March, R. Felkai, L. Rogers, L. Ripoll, Javier Pérez, B. J. P. Jones, B. Palmeiro, M. R. Jorge, J.V. Carrión, A. Botas, F. Monrabal, M. Sorel, A.L. Ferreira, A.D. McDonald, V. Herrero, M. Nebot-Guinot, R.D.P. Mano, J. Muñoz Vidal, Roberto Gutiérrez, C.D.R. Azevedo, I. Liubarsky, L.M. Moutinho, J. Torrent, J.A. Hernando Morata, F.J. Mora, J.M.F. dos Santos, J.F. Toledo, T.M. Stiegler, S. Cárcel, J.F.C.A. Veloso, E.D.C. Freitas, P. Lebrun, A. Martínez, C. Sofka, A.I. Hernandez, J.M. Benlloch-Rodríguez, S. Cebrián, R. C. Webb, M. Diesburg, L. Labarga, Víctor H. Alvarez, A. Laing, M. Losada, J. Renner, Paola Ferrario, Z. Tsamalaidze, and L.M.P. Fernandes
- Subjects
Nuclear and High Energy Physics ,Fano factor ,Ionization ,Xenon ,Ionització ,Electron capture ,Analytical chemistry ,chemistry.chemical_element ,01 natural sciences ,7. Clean energy ,Atomic ,Particle detector ,Nuclear physics ,TECNOLOGIA ELECTRONICA ,Secondary scintillation ,Particle and Plasma Physics ,0103 physical sciences ,Neutrino ,Nuclear ,010306 general physics ,Mathematical Physics ,Physics ,Scintillation ,010308 nuclear & particles physics ,Rare event detection ,Molecular ,Double beta decay ,Nuclear & Particles Physics ,lcsh:QC1-999 ,chemistry ,Electroluminescence ,Yield (chemistry) ,Radioactive decay ,Astronomical and Space Sciences ,lcsh:Physics - Abstract
[EN] Xe-CO2 mixtures are important alternatives to pure xenon in Time Projection Chambers (TPC) based on secondary scintillation (electroluminescence) signal amplification with applications in the important field of rare event detection such as directional dark matter, double electron capture and double beta decay detection. The addition of CO2 to pure xenon at the level of 0.05-0.1% can reduce significantly the scale of electron diffusion from 10 mm/root m to 2.5 mm/root m, with high impact on the discrimination of the events through pattern recognition of the topology of primary ionization trails. We have measured the electroluminescence (EL) yield of Xe-CO2 mixtures, with sub-percent CO2 concentrations. We demonstrate that the EL production is still high in these mixtures, 70% and 35% relative to that produced in pure xenon, for CO2 concentrations around 0.05% and 0.1%, respectively. The contribution of the statistical fluctuations in EL production to the energy resolution increases with increasing CO2 concentration, being smaller than the contribution of the Fano factor for concentrations below 0.1% CO2. (C) 2017 The Author. Published by Elsevier B.V., The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the Ministerio de Economia y Competitividad of Spain under grants FIS2014-53371-C04 and the Severo Ochoa Program SEV-2014-0398; the GVA of Spain under grant PROMETEO/2016/120; the Portuguese FCT under project PTDC/FIS-NUC/2525/2014; the U.S. Department of Energy under contracts number DE-AC02-07CH11359 (Fermi National Accelerator Laboratory) and DE-FG02-13ER42020 (Texas A & the University of Texas at Arlington. C.A.O.H., E.D.C.F., C.M.B.M. and C.D.R.A. acknowledge FCT under grants PD/BD/105921/2014, SFRH/BPD/109180/2015, SFRH/BPD/76842/2011 and SFRH/BPD/79163/2011, respectively.
- Published
- 2017
25. Topological signature in the NEXT high pressure xenon TPC
- Author
-
Paola Ferrario
- Subjects
Physics ,History ,Physics - Instrumentation and Detectors ,010308 nuclear & particles physics ,chemistry.chemical_element ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,01 natural sciences ,Signature (logic) ,Computer Science Applications ,Education ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Xenon ,chemistry ,High pressure ,0103 physical sciences ,010306 general physics - Abstract
The NEXT experiment aims to observe the neutrinoless double beta decay of Xe-136 in a high-pressure xenon gas TPC using electroluminescence to amplify the signal from ionization. One of the main advantages of this technology is the possibility to use the topology of events with energies close to Qbb as an extra tool to reject background. In these proceedings we show with data from prototypes that an extra background rejection factor of 24.3 +- 1.4 (stat.)% can be achieved, while maintaining an efficiency of 66.7 +- 1.% for signal events. The performance expected in NEW, the next stage of the experiment, is to improve to 12.9% +- 0.6% background acceptance for 66.9% +- 0.6% signal efficiency., Comment: Proceedings of the XXVII International Conference on Neutrino Physics and Astrophysics (Neutrino), London, July 2016
- Published
- 2016
- Full Text
- View/download PDF
26. Liquid xenon in nuclear medicine: state-of-the-art and the PETALO approach
- Author
-
Paola Ferrario
- Subjects
Photomultiplier ,Physics - Instrumentation and Detectors ,Materials science ,Physics::Instrumentation and Detectors ,Physics::Medical Physics ,Monte Carlo method ,FOS: Physical sciences ,chemistry.chemical_element ,01 natural sciences ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,Silicon photomultiplier ,Xenon ,Ionization ,0103 physical sciences ,Positron emission ,Instrumentation ,Mathematical Physics ,Cherenkov radiation ,Scintillation ,010308 nuclear & particles physics ,business.industry ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,chemistry ,Nuclear medicine ,business - Abstract
Liquid xenon has several attractive features, which make it suitable for applications to nuclear medicine, such as high scintillation yield and fast scintillation decay time, better than currently used crystals. Since the '90s, several attempts has been made to build Positron Emission Tomography scanners based on liquid xenon, which can be divided into two different approaches: on one hand, the detection of the ionization charge in TPCs, and, on the other one, the detection of scintillation light with photomultipliers. PETALO (Positron Emission Tof Apparatus with Liquid xenOn) is a novel concept, which combines liquid xenon scintillating cells and silicon photomultipliers for the readout. A first Monte Carlo investigation has pointed out that this technology would provide an excellent intrinsic time resolution, which makes it possible to measure the Time-Of-Flight with high efficiency. Also, the transparency of liquid xenon to UV and blue wavelengths opens the possibility of exploiting both scintillation and Cherenkov light for a high-sensitivity TOF-PET., Comment: Proceedings of the Lidine '17 conference. Accepted by JINST
- Published
- 2018
- Full Text
- View/download PDF
27. Monte Carlo study of the coincidence resolving time of a liquid xenon PET scanner, using Cherenkov radiation
- Author
-
J.J. Gómez-Cadenas, J.M. Benlloch-Rodríguez, and Paola Ferrario
- Subjects
Photomultiplier ,Physics - Instrumentation and Detectors ,Photon ,Monte Carlo method ,FOS: Physical sciences ,Photodetector ,chemistry.chemical_element ,01 natural sciences ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,Xenon ,Optics ,0103 physical sciences ,Instrumentation ,Mathematical Physics ,Cherenkov radiation ,Physics ,Scintillation ,010308 nuclear & particles physics ,business.industry ,Detector ,Instrumentation and Detectors (physics.ins-det) ,Physics - Medical Physics ,chemistry ,Medical Physics (physics.med-ph) ,business - Abstract
In this paper we use detailed Monte Carlo simulations to demonstrate that liquid xenon (LXe) can be used to build a Cherenkov-based TOF-PET, with an intrinsic coincidence resolving time (CRT) in the vicinity of 10 ps. This extraordinary performance is due to three facts: a) the abundant emission of Cherenkov photons by liquid xenon; b) the fact that LXe is transparent to Cherenkov light; and c) the fact that the fastest photons in LXe have wavelengths higher than 300 nm, therefore making it possible to separate the detection of scintillation and Cherenkov light. The CRT in a Cherenkov LXe TOF-PET detector is, therefore, dominated by the resolution (time jitter) introduced by the photosensors and the electronics. However, we show that for sufficiently fast photosensors (e.g, an overall 40 ps jitter, which can be achieved by current micro-channel plate photomultipliers) the overall CRT varies between 30 and 55 ps, depending of the detection efficiency. This is still one order of magnitude better than commercial CRT devices and improves by a factor 3 the best CRT obtained with small laboratory prototypes., Comment: accepted by JINST
- Published
- 2017
- Full Text
- View/download PDF
28. Present Status and Future Perspectives of the NEXT Experiment
- Author
-
T.H.V.T. Dias, S. Cebrián, R. C. Webb, F.I.G.M. Borges, M. Sorel, J. M. Hauptman, A.L. Ferreira, M. Nebot-Guinot, Roberto Gutiérrez, I. G. Irastorza, N. Yahlali, A. Tomás, Roberto Palma, A. Marí, F.P. Santos, L.M.P. Fernandes, L. Labarga, Hector Gomez, Víctor H. Alvarez, D. Shuman, Romain Esteve, José Villar, F.J. Mora, J Renner, Petr Evtoukhovitch, Z. Tsamalaidze, A. Cervera, J. A. M. Lopes, A. Moiseenko, F.J. Iguaz, Luis M. Serra, V. M. Gehman, M. Monserrate, A. Goldschmidt, C.M.B. Monteiro, J.F.C.A. Veloso, E.D.C. Freitas, C. Sofka, J. Torrent, Diego González-Díaz, J. T. White, J.M.F. dos Santos, M A Jinete, T. Miller, G. Luzón, J. F. Castel, A Rodríguez, A. Simón, D.C. Herrera, D. R. Nygren, L.M. Moutinho, L. Segui, J. Muñoz Vidal, L. Ripoll, Gabriela Navarro, H. Natal da Luz, Javier Pérez, F. Monrabal, Carlos R. Oliveira, I. Liubarsky, José L. Pérez-Aparicio, C.A.N. Conde, J. Rodríguez, M. Losada, M. Egorov, Paola Ferrario, A. Laing, D. Lorca, T. Dafni, J. A. Hernando Morata, J. S. Díaz, J. Martín-Albo, J. J. Gómez Cadenas, A. Gil, J.F. Toledo, S. Cárcel, A. Martínez, and SCOAP
- Subjects
MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Article Subject ,Double beta decay experiment ,chemistry.chemical_element ,FOS: Physical sciences ,NEXT ,7. Clean energy ,01 natural sciences ,Signal ,Mathematical Sciences ,TECNOLOGIA ELECTRONICA ,Nuclear physics ,Xenon ,Double beta decay ,0103 physical sciences ,010306 general physics ,physics.ins-det ,Physics ,Time projection chamber ,Isotope ,010308 nuclear & particles physics ,Detector ,Instrumentation and Detectors (physics.ins-det) ,lcsh:QC1-999 ,chemistry ,Physical Sciences ,Física nuclear ,lcsh:Physics ,Energy (signal processing) - Abstract
Gómez Cadenas, Juan José et al., NEXT is an experiment dedicated to neutrinoless double beta decay searches in xenon. The detector is a TPC, holding 100 kg of high-pressure xenon enriched in the 136Xe isotope. It is under construction in the Laboratorio Subterráneo de Canfranc in Spain, and it will begin operations in 2015. The NEXT detector concept provides an energy resolutionbetter than 1% FWHM and a topological signal that can be used to reduce the background. Furthermore, the NEXT technology can be extrapolated to a 1 ton-scale experiment., This work was supported by the following agencies and institutions: the Ministerio de Economía y Competitividad of Spain under Grants CONSOLIDER-Ingenio 2010 CSD2008- 0037 (CUP), FPA2009-13697-C04-04, and FIS2012-37947- C04; the Director, Office of Science, Office of Basic Energy Sciences of the US Department of Energy under Contract no. DE-AC02-05CH11231; and the Portuguese FCT and FEDER through the program COMPETE, Projects PTDC/FIS/103860/2008 and PTDC/FIS/112272/2009. J. Renner (LBNL) acknowledges the support of a US DOE NNSA Stewardship Science Graduate Fellowship under Contract no. DE-FC52-08NA28752.
- Published
- 2014
- Full Text
- View/download PDF
29. Description and commissioning of NEXT-MM prototype: first results from operation in a Xenon-Trimethylamine gas mixture
- Author
-
I. Giomataris, S. Cebrián, Petr Evtoukhovitch, Frédéric Druillole, G. Martínez-Lema, Hector Gomez, E. Ferrer-Ribas, F.J. Iguaz, R. C. Webb, J Renner, A. Tomás, Javier Pérez, J. A. M. Lopes, V. M. Gehman, A. Simón, M. Sorel, L. Labarga, A.L. Ferreira, M A Jinete, N. Yahlali, L. Ripoll, A. Laing, Javier Rodríguez, J. F. Castel, M. Nebot-Guinot, T. Dafni, J.F.C.A. Veloso, A. Goldschmidt, E.D.C. Freitas, Carlos R. Oliveira, J. Martin-Albo, G. Luzón, A. Moiseenko, L.M. Moutinho, J. Torrent, Víctor H. Alvarez, L.M.P. Fernandes, F. Monrabal, F.I.G.M. Borges, M. Egorov, J. S. Díaz, C. Sofka, A. Cervera, F.P. Santos, José Villar, J.J. Gómez-Cadenas, Paola Ferrario, Roberto Palma, J. T. White, A. Marí, J.F. Toledo, S. Cárcel, Luis M. Serra, J.L. Pérez Aparicio, C.A.N. Conde, Ana M. Gil, C.M.B. Monteiro, J. A. Hernando Morata, J.P. Mols, J. Muñoz Vidal, D. Shuman, Diego González-Díaz, D. Calvet, A. Le Coguie, D. R. Nygren, M. Losada, I. G. Irastorza, Z. Tsamalaidze, Ana Martínez, D. Lorca, J.M.F. dos Santos, T. Miller, A Rodríguez, T.H.V.T. Dias, Roberto Gutiérrez, I. Liubarsky, F.J. Mora, H. Natal da Luz, F. Aznar, L. Segui, Gabriela Navarro, D.C. Herrera, J. M. Hauptman, Romain Esteve, Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica, Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular, Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures, Genética Molecular-Laboratorio de Medicina, Hospital Universitario Central Asturias, Oviedo, Spain, University of Zaragoza - Universidad de Zaragoza [Zaragoza], Departamento de Física, University of Coimbra [Portugal] (UC), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Ecosystèmes méditerranéens et risques (UR EMAX), Centre national du machinisme agricole, du génie rural, des eaux et forêts (CEMAGREF), NEMO, Laboratoire de l'Accélérateur Linéaire (LAL), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Nanophotonics Technology Center, Universitat Politècnica de València (UPV), Departamento de Mecánica de Medios Continuos y Teoría de Estructuras (DMMCTE), Grupo de Física Nuclear y Astropartículas (GIFNA), Instituto de Astrofísica de Andalucía (IAA), and Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Enginyeria -- Instruments ,MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS ,Materials science ,Physics - Instrumentation and Detectors ,Time projection chambers ,Particle tracking detectors (Gaseous detectors) ,chemistry.chemical_element ,Trimethylamine ,FOS: Physical sciences ,Electron ,7. Clean energy ,Engineering instruments ,TECNOLOGIA ELECTRONICA ,chemistry.chemical_compound ,Xenon ,Optics ,Wafer ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Instrumentation ,Mathematical Physics ,Detectors de radiació ,Time projection chamber ,business.industry ,Active volume ,MicroMegas detector ,Instrumentation and Detectors (physics.ins-det) ,Double-beta decay detectors ,chemistry ,Volume (thermodynamics) ,Nuclear counters ,Física nuclear ,business - Abstract
[EN] A technical description of NEXT-MM and its commissioning and first performance is reported. Having an active volume of ∼35 cm drift × 28 cm diameter, it constitutes the largest Micromegas-read TPC operated in Xenon ever constructed, made by a sectorial arrangement of the 4 largest single wafers manufactured with the Microbulk technique to date. It is equipped with a suitably pixelized readout and with a sufficiently large sensitive volume (∼23 l) so as to contain long (∼20 cm) electron tracks. First results obtained at 1 bar for Xenon and Trymethylamine (Xe-(2%)TMA) mixture are presented. The TPC can accurately reconstruct extended background tracks. An encouraging full-width half-maximum of 11.6 % was obtained for ∼29 keV gammas without resorting to any data post-processing., The NEXT Collaboration acknowledges funding support from the following agencies and institutions: the Spanish Ministerio de Economia y Competitividad under grants CONSOLIDER-Ingenio 2010 CSD2008-0037 (CUP), Consolider-Ingenio 2010 CSD2007- 00042 (CPAN), and under contracts ref. FPA2008-03456, FPA2009-13697-C04-04; FCT(Lisbon) and FEDER under grant PTDC/FIS/103860/2008; the European Commission under the European Research Council T-REX Starting Grant ref. ERC-2009-StG-240054 of the IDEAS program of the 7th EU Framework Program; Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. Part of these grants are funded by the European Regional Development Fund (ERDF/FEDER). J. Renner (LBNL) acknowledges the support of a US DOE NNSA Stewardship Science Graduate Fellowship under contract no. DE-FC52-08NA28752. F.I. acknowledges the support from the Eurotalents program. We are also grateful to our colleagues of the RD-51 collaboration for helpful discussions and encouragement. Finally, authors would like to acknowledge the use of Servicio General de Apoyo a la Investigacion-SAI of the Universidad de Zaragoza and R. de Oliveira and his team at CERN for the manufacturing of the Micromegas readouts.
- Published
- 2014
- Full Text
- View/download PDF
30. Backgrounds and sensitivity of the NEXT double beta decay experiment
- Author
-
Juan Jose Gomez Cadenas, Miquel Nebot Guinot, Paola Ferrario, Javier Muñoz Vidal, Susana Cebrian, and Justo Martín-Albo
- Subjects
Nuclear and High Energy Physics ,Particle physics ,Physics - Instrumentation and Detectors ,Q value ,chemistry.chemical_element ,double beta decay ,FOS: Physical sciences ,NEXT ,01 natural sciences ,7. Clean energy ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,Xenon ,Double beta decay ,0103 physical sciences ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Physics ,Time projection chamber ,010308 nuclear & particles physics ,background ,Canfranc Underground Laboratory ,Detector ,Instrumentation and Detectors (physics.ins-det) ,time projection chamber ,MAJORANA ,chemistry ,radioactivity ,Neutrino - Abstract
NEXT (Neutrino Experiment with a Xenon TPC) is a neutrinoless double-beta (\beta \beta 0\nu) decay experiment that will operate at the Canfranc Underground Laboratory (LSC). It is an electroluminescent high-pressure gaseous xenon Time Projection Chamber (TPC) with separate read-out planes for calorimetry and tracking. Energy resolution and background suppression are the two key features of any neutrinoless double beta decay experiment. NEXT has both good energy resolution (, Comment: 3 pages, 3 figures, 2 tables. Proceedings from the poster session at the 37th International Conference on High Energy Physics (ICHEP, Valencia, Jul 2014)
- Published
- 2014
- Full Text
- View/download PDF
31. Investigation of the coincidence resolving time performance of a PET scanner based on liquid xenon: a Monte Carlo study
- Author
-
Javier Rodríguez, Paola Ferrario, F. Monrabal, J.J. Gómez-Cadenas, J.F. Toledo, and J.M. Benlloch-Rodríguez
- Subjects
Photomultiplier ,Scanner ,Physics - Instrumentation and Detectors ,Materials science ,FOS: Physical sciences ,chemistry.chemical_element ,Wavelength shifter ,01 natural sciences ,Lyso ,High Energy Physics - Experiment ,030218 nuclear medicine & medical imaging ,High Energy Physics - Experiment (hep-ex) ,03 medical and health sciences ,0302 clinical medicine ,Silicon photomultiplier ,Xenon ,Optics ,0103 physical sciences ,Ultraviolet light ,Instrumentation ,Mathematical Physics ,010308 nuclear & particles physics ,business.industry ,Instrumentation and Detectors (physics.ins-det) ,Time of flight ,chemistry ,business - Abstract
The measurement of the time of flight of the two 511 keV gammas recorded in coincidence in a PET scanner provides an effective way of reducing the random background and therefore increases the scanner sensitivity, provided that the coincidence resolving time (CRT) of the gammas is sufficiently good. The best commercial PET-TOF system today (based in LYSO crystals and digital SiPMs), is the VEREOS of Philips, boasting a CRT of 316 ps (FWHM). In this paper we present a Monte Carlo investigation of the CRT performance of a PET scanner exploiting the scintillating properties of liquid xenon. We find that an excellent CRT of 70 ps (depending on the PDE of the sensor) can be obtained if the scanner is instrumented with silicon photomultipliers (SiPMs) sensitive to the ultraviolet light emitted by xenon. Alternatively, a CRT of 160 ps can be obtained instrumenting the scanner with (much cheaper) blue-sensitive SiPMs coated with a suitable wavelength shifter. These results show the excellent time of flight capabilities of a PET device based in liquid xenon., Accepted by JINST
- Published
- 2016
- Full Text
- View/download PDF
32. SiPMs coated with TPB: coating protocol and characterization for NEXT
- Author
-
L. Segui, F.I.G.M. Borges, Gabriela Navarro, M. Nebot, V. Herrero, Henk J. Bolink, Zviad Tsamalaidze, A. Tomás, D. Shuman, J. Bayarri, Romain Esteve, Luis M. Serra, M. Batallé, E. Radicioni, E. Velicheva, C.M.B. Monteiro, F.J. Mora, Ana M. Gil, Marta Losada, Paola Ferrario, A. M. Méndez, A. Marí, Hicham Brine, Javier Rodríguez, L.M.P. Fernandes, T.H.V.T. Dias, Ioannis Giomataris, Taisy Silva Weber, A. Goldschmidt, J. Hauptman, N. Yahlali, J. Torrent Collell, A. Moisenko, J.F. Toledo, S. Cárcel, Roberto Gutiérrez, D. Lorca, I. Liubarsky, M. Quinto, J. M. Catalá, C. Sofka, D. Domínguez Vázquez, L. Ripoll, S. Cebrián, J.A. Villar, D.C. Herrera, A. Cervera, J. Agramunt, I. G. Irastorza, M. Sorel, G. Luzón, Markus Ball, J.T. White, A.L. Ferreira, P Evtoukhovitch, S. A. García, J. S. Díaz, F.J. Iguaz, T. Dafni, J. Martín-Albo, Alejandra Soriano, J.J. Gómez-Cadenas, R. C. Webb, Roberto Palma, J.F.C.A. Veloso, E.D.C. Freitas, F.P. Santos, E. Ferrer-Ribas, V. Álvarez, J. M. Carmona, J. Muñoz Vidal, Dave Nygren, K. González, J. Castel, J.M.F. dos Santos, J. A. Hernando-Morata, T. Miller, J. A. M. Lopes, A Rodríguez, J. Ferrando, Javier Pérez, F. Monrabal, José Monzó, Helmuth Spieler, C.A.N. Conde, Luis Labarga, Haley Louise Gomez, H. Natal da Luz, E. Gómez, V. Kalinnikov, D. Chan, C. A. B. Oliveira, J. Renner, and J.L. Pérez Aparicio
- Subjects
Materials science ,Physics - Instrumentation and Detectors ,FOS: Physical sciences ,chemistry.chemical_element ,engineering.material ,Wavelength shifter ,Tracking (particle physics) ,7. Clean energy ,01 natural sciences ,High Energy Physics - Experiment ,TECNOLOGIA ELECTRONICA ,High Energy Physics - Experiment (hep-ex) ,Xenon ,Silicon photomultiplier ,Coating ,0103 physical sciences ,Sensitivity (control systems) ,Visible and IR photons (solid-state) ,010306 general physics ,Instrumentation ,Photon detectors for UV ,Mathematical Physics ,Scintillation ,Time projection chamber ,010308 nuclear & particles physics ,business.industry ,Time projection Chambers (TPC) ,Física ,Detectors ,Instrumentation and Detectors (physics.ins-det) ,Gas detectors ,Scintillators, scintillation and light emission processes (solid, gas and liquid scintillators) ,Detectors de gasos ,chemistry ,Particle tracking detectors (Solid-state detectors) ,engineering ,Optoelectronics ,business - Abstract
[EN] Silicon photomultipliers (SiPM) are the photon detectors chosen for the tracking readout in NEXT, a neutrinoless \bb decay experiment which uses a high pressure gaseous xenon time projection chamber (TPC). The reconstruction of event track and topology in this gaseous detector is a key handle for background rejection. Among the commercially available sensors that can be used for tracking, SiPMs offer important advantages, mainly high gain, ruggedness, cost-effectiveness and radio-purity. Their main drawback, however, is their non sensitivity in the emission spectrum of the xenon scintillation (peak at 175 nm). This is overcome by coating these sensors with the organic wavelength shifter tetraphenyl butadiene (TPB). In this paper we describe the protocol developed for coating the SiPMs with TPB and the measurements performed for characterizing the coatings as well as the performance of the coated sensors in the UV-VUV range. © 2012 IOP Publishing Ltd and SISSA., We acknowledge the Spanish MICINN for the Consolider Ingenio grants under contracts CSD2008-00037, CSD2007-00042 and CSD2007-00010 and for the research grants under contract FPA2008-03456 and FPA2009-13697-C04-01 part of which come from FEDER funds. The Portuguese team acknowledges support from FCT and FEDER through program COMPETE, project PTDC/FIS/103860/2008. J. Renner acknowledges the support of the U.S. Department of Energy Stewardship Science Graduate Fellowship, grant number DE-FC52-08NA28752.
- Published
- 2012
33. Radiopurity control in the NEXT-100 double beta decay experiment: procedures and initial measurements
- Author
-
Adriane De Assis Lawisch Rodriguez, I. G. Irastorza, Antonio J. Gil, H. Natal da Luz, Z. Tsamalaidze, Javier Pérez, D. González-Díaz, J. S. Díaz, L.M. Moutinho, J. Torrent, T. Dafni, J. Martín-Albo, G. Luzón, J. M. Hauptman, J.J. Gómez-Cadenas, L. Labarga, M. Sorel, A. Moiseenko, M. Losada, Petr Evtoukhovitch, A.L. Ferreira, F.P. Santos, J.M.F. dos Santos, M. Egorov, Roberto Palma, N. Yahlali, T. Miller, J.F.C.A. Veloso, E.D.C. Freitas, A. Tomás, Ana Martínez, H. Gómez, Alessandro Bettini, L. Ripoll, A. Simón, T.H.V.T. Dias, M A Jinete, Víctor H. Alvarez, V. M. Gehman, Paola Ferrario, F.I.G.M. Borges, A. Goldschmidt, D. Domínguez Vázquez, J. F. Castel, Roberto Gutiérrez, J. A. Hernando Morata, F. Monrabal, J. Muñoz Vidal, José Villar, A. Cervera, Carlos R. Oliveira, F.J. Iguaz, I. Liubarsky, S. Cebrián, J. T. White, C.A.N. Conde, J. Renner, Luis M. Serra, Romain Esteve, J.L. Pérez Aparicio, D. Shuman, I. C. Bandac, R. C. Webb, Jorge Luis Rodriguez, C.M.B. Monteiro, D. R. Nygren, A. Laing, A. Ortiz de Solórzano, F.J. Mora, C. Sofka, M. Nebot, A. Marí, D. Lorca, J.F. Toledo, S. Cárcel, L.M.P. Fernandes, D.C. Herrera, J.A.M. Lopes, L. Segui, and Gabriela Navarro
- Subjects
MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS ,Physics - Instrumentation and Detectors ,Glow Discharge Mass Spectrometry ,Physics::Instrumentation and Detectors ,chemistry.chemical_element ,FOS: Physical sciences ,Germanium ,01 natural sciences ,7. Clean energy ,TECNOLOGIA ELECTRONICA ,Nuclear physics ,Cambres d'ionització ,Xenon ,Double beta decay ,0103 physical sciences ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Instrumentation ,Detectors de radiació ,Mathematical Physics ,Physics ,Radionuclide ,Radiation calculations ,Ionization chambers ,010308 nuclear & particles physics ,Time projection Chambers (TPC) ,Gamma detectors (scintillators, CZT, HPG, HgI etc) ,Física ,Instrumentation and Detectors (physics.ins-det) ,chemistry ,Nuclear counters ,Neutrino - Abstract
[EN] The "Neutrino Experiment with a Xenon Time-Projection Chamber" (NEXT) is intended to investigate the neutrinoless double beta decay of Xe-136, which requires a severe suppression of potential backgrounds. An extensive screening and material selection process is underway for NEXT since the control of the radiopurity levels of the materials to be used in the experimental set-up is a must for rare event searches. First measurements based on Glow Discharge Mass Spectrometry and gamma-ray spectroscopy using ultra-low background germanium detectors at the Laboratorio Subterraneo de Canfranc (Spain) are described here. Activity results for natural radioactive chains and other common radionuclides are summarized, being the values obtained for some materials like copper and stainless steel very competitive. The implications of these results for the NEXT experiment are also discussed., We deeply acknowledge LSC directorate and staff for their strong support for performing the measurements at the LSC Radiopurity Service. The NEXT Collaboration acknowledges funding support from the following agencies and institutions: the Spanish Ministerio de Economia y Competitividad under grants CONSOLIDER-Ingenio 2010 CSD2008-0037 (CUP), Consolider-Ingenio 2010 CSD2007-00042 (CPAN), and under contracts ref. FPA2008-03456, FPA2009-13697-C04-04; FCT(Lisbon) and FEDER under grant PTDC/FIS/103860/2008; the European Commission under the European Research Council T-REX Starting Grant ref. ERC-2009-StG-240054 of the IDEAS program of the 7th EU Framework Program; Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. Part of these grants are funded by the European Regional Development Fund (ERDF/FEDER). J. Renner (LBNL) acknowledges the support of a US DOE NNSA Stewardship Science Graduate Fellowship under contract no. DE-FC52-08NA28752. F.I. acknowledges the support from the Eurotalents program.
- Published
- 2012
- Full Text
- View/download PDF
34. Results of the material screening program of the NEXT experiment
- Author
-
G. Martínez-Lema, F.J. Iguaz, Luis M. Serra, D. Lorca, L.M.P. Fernandes, F.I.G.M. Borges, C.M.B. Monteiro, F.J. Mora, N. Yahlali, A. Simón, V. M. Gehman, J.A. Villar, Diego González-Díaz, T. Dafni, V. Álvarez, J. S. Díaz, H. Gómez, J. Martín-Albo, J.J. Gómez-Cadenas, J.M.F. dos Santos, T. Miller, Alessandro Bettini, A Rodríguez, C.A.N. Conde, Luis Labarga, J.T. White, A. Goldschmidt, J. Hauptman, L.M. Moutinho, J. Torrent, M. Sorel, F. Monrabal, L. Ripoll, Marta Losada, A.L. Ferreira, F.P. Santos, M. Nebot-Guinot, Roberto Gutiérrez, I. Liubarsky, J. A. Hernando Morata, D.C. Herrera, A. Marí, I. C. Bandac, J.F. Toledo, S. Cárcel, C. Sofka, A. Martínez, Javier Rodríguez, Manuel Camargo, M. Monserrate, J. Muñoz Vidal, A. Cervera, D. Shuman, Marcos Fernandez, S. Cebrián, R. C. Webb, Romain Esteve, Javier Pérez, J.F.C.A. Veloso, E.D.C. Freitas, G. Luzón, L. Segui, I. G. Irastorza, Paola Ferrario, D. R. Nygren, A. Laing, Zviad Tsamalaidze, J. Renner, J.L. Pérez Aparicio, and C. A. B. Oliveira
- Subjects
MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS ,Nuclear and High Energy Physics ,Particle physics ,Physics - Instrumentation and Detectors ,Nuclear engineering ,FOS: Physical sciences ,chemistry.chemical_element ,Radiopurity ,01 natural sciences ,High Energy Physics - Experiment ,TECNOLOGIA ELECTRONICA ,High Energy Physics - Experiment (hep-ex) ,Xenon ,Double beta decay ,0103 physical sciences ,Germanium gamma spectrometry ,Nuclear Experiment (nucl-ex) ,Gamma ray spectrometry ,010306 general physics ,Nuclear Experiment ,Physics ,Measurement method ,010308 nuclear & particles physics ,Gamma ray spectrometer ,Canfranc Underground Laboratory ,Espectrometria de raigs gamma ,Instrumentation and Detectors (physics.ins-det) ,Semiconductor detector ,chemistry ,Neutrino - Abstract
The 'Neutrino Experiment with a Xenon TPC (NEXT)', intended to investigate neutrinoless double beta decay, requires extremely low background levels. An extensive material screening and selection process to assess the radioactivity of components is underway combining several techniques, including germanium gamma-ray spectrometry performed at the Canfranc Underground Laboratory; recent results of this material screening program are presented here., Proceedings for a poster contribution at ICHEP 2014, Valencia, Spain
- Full Text
- View/download PDF
35. First proof of topological signature in the high pressure xenon gas TPC with electroluminescence amplification for the NEXT experiment
- Author
-
J.F.C.A. Veloso, E.D.C. Freitas, A. Goldschmidt, J. Hauptman, J.F. Toledo, S. Cárcel, P. Lebrun, N. Yahlali, D. Shuman, Romain Esteve, C.D.R. Azevedo, S. Cebrián, R. C. Webb, J.A. Villar, A. Martínez, D. R. Nygren, F.J. Mora, T. Dafni, A. Laing, M. Diesburg, Jorge Luis Rodriguez, A. Simón, I. G. Irastorza, Zviad Tsamalaidze, D. Lorca, M. Monserrate, Marta Losada, J.M.F. dos Santos, J. Muñoz Vidal, T. Miller, N. López-March, Javier Pérez, F.P. Santos, C.A.O. Henriques, Roberto Gutiérrez, J. S. Díaz, P. Novella, I. Liubarsky, J. Martín-Albo, J.J. Gómez-Cadenas, F. Monrabal, F.I.G.M. Borges, J.A. Hernando Morata, L.M. Moutinho, J. Torrent, Paola Ferrario, D. González-Díaz, V. M. Gehman, L. Ripoll, G. Luzón, C. Sofka, A. Para, M. Sorel, A.L. Ferreira, M. Nebot-Guinot, G. Martínez-Lema, J.T. White, L.M.P. Fernandes, A. Marí, M. Querol, A. Cervera, Luis M. Serra, C.M.B. Monteiro, Víctor H. Alvarez, H. Yepes-Ramírez, J. Renner, J.L. Pérez Aparicio, C.A.N. Conde, and Luis Labarga
- Subjects
MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS ,Nuclear and High Energy Physics ,chemistry.chemical_element ,Topology (electrical circuits) ,Electron ,Topology ,01 natural sciences ,7. Clean energy ,Signal ,Atomic ,Mathematical Sciences ,TECNOLOGIA ELECTRONICA ,Nuclear physics ,Xenon ,Particle and Plasma Physics ,Ionization ,Double beta decay ,0103 physical sciences ,Dark Matter ,Nuclear ,010306 general physics ,Double Beta Decay ,Mathematical Physics ,Physics ,Quantum Physics ,010308 nuclear & particles physics ,Molecular ,Beta Decay ,Nuclear & Particles Physics ,Desintegració beta ,chemistry ,Dark matter (Astronomy) ,Physical Sciences ,Decay chain ,Matèria fosca (Astronomia) ,Energy (signal processing) - Abstract
[EN] The NEXT experiment aims to observe the neutrinoless double beta decay of 136Xe in a high-pressure xenon gas TPC using electroluminescence (EL) to amplify the signal from ionization. One of the main advantages of this technology is the possibility to reconstruct the topology of events with energies close to Qββ . This paper presents the first demonstration that the topology provides extra handles to reject background events using data obtained with the NEXT-DEMO prototype. Single electrons resulting from the interactions of 22Na 1275 keV gammas and electron-positron pairs produced by conversions of gammas from the 228Th decay chain were used to represent the background and the signal in a double beta decay. These data were used to develop algorithms for the reconstruction of tracks and the identification of the energy deposited at the end-points, providing an extra background rejection factor of 24.3 ± 1.4 (stat.)%, while maintaining an efficiency of 66.7 ± 1.% for signal events., This work was supported by the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the Ministerio de Economia y Competitividad of Spain under grants CONSOLIDER-Ingenio 2010 CSD2008-0037 (CUP), FPA2009-13697-C04 and FIS2012-37947-C04; the Portuguese FCT and FEDER through the program COMPETE, project PTDC/FIS/103860/2008; and the Fermi National Accelerator Laboratory under U.S. Department of Energy Contract No. DE-AC02-07CH11359
- Full Text
- View/download PDF
36. Ionization and scintillation of nuclear recoils in gaseous xenon
- Author
-
G. Luzón, Roberto Palma, F.J. Iguaz, J. M. Hauptman, N. Yahlali, A. Tomás, Hector Gomez, M. Sorel, Romain Esteve, A.L. Ferreira, A. Cervera, I. G. Irastorza, M. Nebot-Guinot, M. Losada, J. S. Díaz, Z. Tsamalaidze, F.J. Mora, Luis M. Serra, J.F. Toledo, S. Cárcel, L. Segui, J.J. Gómez-Cadenas, C.M.B. Monteiro, D. R. Nygren, J. Martin-Albo, F. Monrabal, C.A.N. Conde, Ana M. Gil, Gabriela Navarro, Diego González-Díaz, A. Marí, H. Natal da Luz, L.M.P. Fernandes, M. Monserrate, C. Sofka, J. A. M. Lopes, D.C. Herrera, Víctor H. Alvarez, Ana Martínez, Javier Pérez, V. M. Gehman, M A Jinete, José Villar, J. F. Castel, J. A. Hernando Morata, J. Muñoz Vidal, F.I.G.M. Borges, A. Goldschmidt, F.P. Santos, L.M. Moutinho, J. Torrent, D. Shuman, J Renner, J. T. White, J.L. Pérez Aparicio, J.M.F. dos Santos, T. Miller, T.H.V.T. Dias, A Rodríguez, L. Ripoll, Roberto Gutiérrez, I. Liubarsky, Carlos R. Oliveira, T. Dafni, J.F.C.A. Veloso, E.D.C. Freitas, Paola Ferrario, A. Laing, L. Labarga, Javier Rodríguez, H. S. Matis, A. Moiseenko, D. Lorca, S. Cebrián, Y. Nakajima, R. C. Webb, A. Simón, and Petr Evtoukhovitch
- Subjects
MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,WIMP ,Physics::Instrumentation and Detectors ,Nuclear Theory ,FOS: Physical sciences ,chemistry.chemical_element ,7. Clean energy ,01 natural sciences ,High Energy Physics - Experiment ,TECNOLOGIA ELECTRONICA ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Recoil ,Xenon ,Ionization ,High pressure xenon gas ,0103 physical sciences ,Dark matter ,Nuclear recoils ,Physics::Atomic and Molecular Clusters ,Neutron ,Physics::Atomic Physics ,Nuclear Experiment (nucl-ex) ,Neutrinoless double beta decay ,010306 general physics ,Nuclear Experiment ,Instrumentation ,Physics ,Scintillation ,Time projection chamber ,010308 nuclear & particles physics ,Instrumentation and Detectors (physics.ins-det) ,chemistry ,Scintillation counter ,Neutron source - Abstract
Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope α-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments., This work was supported by the following agencies and institutions: the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy, and the National Energy Research Scientific Computing Center (NERSC), supported by the Office of Science of the U.S. Department of Energy, both under Contract no. DE-AC02-05CH11231; the European Research Council under the Advanced Grant 339787-NEXT; the Ministerio de Economia y Competitividad of Spain under Grants CONSOLIDER-Ingenio 2010 C5D2008-0037 (CUP), FPA2009-13697-004-04, FPA2009-13697-C04-01, FIS2012-37947-C04-01, FIS2012-37947-C04-02, FIS2012-37947-C04-03, and FIS2012-37947-C04-04; and the Portuguese FCT and FEDER through the program COMPETE, Projects PTDC/FIS/103860/2008 and PTDC/FIS/112272/2009. J. Renner acknowledges the support of a Department of Energy National Nuclear Security Administration Stewardship Science Graduate Fellowship, grant number DE-FC52-08NA28752.
37. Demonstration of Single-Barium-Ion Sensitivity for Neutrinoless Double-Beta Decay Using Single-Molecule Fluorescence Imaging
- Author
-
R. Felkai, C.M.B. Monteiro, A.D. McDonald, N. López-March, J. Muñoz Vidal, J. Renner, V. Herrero, Diego González-Díaz, J.A. Hernando Morata, L. Labarga, J.F.C.A. Veloso, E.D.C. Freitas, J. S. Díaz, L. Rogers, P. Novella, J. Martín-Albo, J.J. Gómez-Cadenas, L. Ripoll, B. J. P. Jones, D.R. Nygren, A. Botas, G. Martínez-Lema, J.T. White, L.M. Moutinho, J. Torrent, B. Palmeiro, A. Para, F.I.G.M. Borges, L.M.P. Fernandes, J. Rodríguez, N. Yahlali, F.J. Mora, M. Sorel, T.M. Stiegler, A.L. Ferreira, Romain Esteve, M. Nebot-Guinot, Sandra K. Johnston, J. Pérez, Paola Ferrario, Jose Repond, F.P. Santos, M. Losada, J.M. Benlloch-Rodríguez, J.M.F. dos Santos, S. Riordan, C. Adams, I. Liubarsky, C.A.O. Henriques, Víctor H. Alvarez, A. Goldschmidt, A. Laing, Roberto Gutiérrez, J. Hauptman, M. Querol, R. Guenette, J.F. Toledo, S. Cárcel, P. Lebrun, M. Diesburg, A. Martínez, J. Escada, C.D.R. Azevedo, Z. Tsamalaidze, S. Cebrián, R. C. Webb, M. Musti, C.A.N. Conde, A. Simón, F. Monrabal, C. Sofka, J. V. Carrión, K. Hafidi, and A.I. Hernandez
- Subjects
Physics - Instrumentation and Detectors ,Materials science ,Masses ,FOS: Physical sciences ,General Physics and Astronomy ,chemistry.chemical_element ,01 natural sciences ,7. Clean energy ,Molecular physics ,High Energy Physics - Experiment ,Ion ,TECNOLOGIA ELECTRONICA ,High Energy Physics - Experiment (hep-ex) ,Nuclear magnetic resonance ,Xenon ,Double beta decay ,0103 physical sciences ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,010308 nuclear & particles physics ,Barium ,Instrumentation and Detectors (physics.ins-det) ,Single-molecule experiment ,Photobleaching ,Fluorescence ,Dication ,chemistry - Abstract
[EN] A new method to tag the barium daughter in the double-beta decay of Xe-136 is reported. Using the technique of single molecule fluorescent imaging (SMFI), individual barium dication (Ba++) resolution at a transparent scanning surface is demonstrated. A single-step photobleach confirms the single ion interpretation. Individual ions are localized with superresolution (similar to 2 nm), and detected with a statistical significance of 12.9 sigma over backgrounds. This lays the foundation for a new and potentially background-free neutrinoless double-beta decay technology, based on SMFI coupled to high pressure xenon gas time projection chambers., NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under Advanced Grant No. 339787-NEXT, the Ministerio de Economia y Competitividad of Spain under Grants No. FIS2014-53371-C04 and the Severo Ochoa Program SEV-2014-0398, the Generalitat Valenciana (GVA) of Spain under Grant No. PROMETEO/2016/120, the Portuguese FCT and FEDER through the program COMPETE, project PTDC/FIS/103860/2008, the U.S. Department of Energy under Contracts No. DE-AC02-07CH11359 (Fermi National Accelerator Laboratory) and No. DE-FG02-13ER42020 (Texas A&M) and No. DE-SC0017721 (University of Texas at Arlington), and the University of Texas at Arlington.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.