Back to Search
Start Over
Electroluminescence TPCs at the thermal diffusion limit
- Source :
- Biblos-e Archivo. Repositorio Institucional de la UAM, instname, Journal of High Energy Physics, RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia, Journal of High Energy Physics, Vol 2019, Iss 1, Pp 1-23 (2019), Journal of High Energy Physics, vol 2019, iss 1, Digital.CSIC. Repositorio Institucional del CSIC, Journal of High Energy Physics, 2019, núm. art. 27, Articles publicats (D-EMCI), DUGiDocs – Universitat de Girona, Zaguán. Repositorio Digital de la Universidad de Zaragoza
- Publication Year :
- 2019
- Publisher :
- Springer Nature, 2019.
-
Abstract
- Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAM<br />The NEXT experiment aims at searching for the hypothetical neutrinoless double-beta decay from the 136Xe isotope using a high-purity xenon TPC. Efficient discrimination of the events through pattern recognition of the topology of primary ionisation tracks is a major requirement for the experiment. However, it is limited by the diffusion of electrons. It is known that the addition of a small fraction of a molecular gas to xenon reduces electron diffusion. On the other hand, the electroluminescence (EL) yield drops and the achievable energy resolution may be compromised. We have studied the effect of adding several molecular gases to xenon (CO2, CH4 and CF4) on the EL yield and energy resolution obtained in a small prototype of driftless gas proportional scintillation counter. We have compared our results on the scintillation characteristics (EL yield and energy resolution) with a microscopic simulation, obtaining the diffusion coefficients in those conditions as well. Accordingly, electron diffusion may be reduced from about 10 mm/m for pure xenon down to 2.5 mm/m using additive concentrations of about 0.05%, 0.2% and 0.02% for CO2, CH4 and CF4, respectively. Our results show that CF4 admixtures present the highest EL yield in those conditions, but very poor energy resolution as a result of huge fluctuations observed in the EL formation. CH4 presents the best energy resolution despite the EL yield being the lowest. The results obtained with xenon admixtures are extrapolated to the operational conditions of the NEXT-100 TPC. CO2 and CH4 show potential as molecular additives in a large xenon TPC. While CO2 has some operational constraints, making it difficult to be used in a large TPC, CH4 shows the best performance and stability as molecular additive to be used in the NEXT-100 TPC, with an extrapolated energy resolution of 0.4% at 2.45 MeV for concentrations below 0.4%, which is only slightly worse than the one obtained for pure xenon. We demonstrate the possibility to have an electroluminescence TPC operating very close to the thermal diffusion limit without jeopardizing the TPC performance, if CO2 or CH4 are chosen as additives.[Figure not available: see fulltext.]<br />The NEXT Collaboration acknowledges support from the following agencies and institutions: the European Research Council (ERC) under the Advanced Grant 339787-NEXT; the European Union’s Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Skłodowska-Curie Grant Agreements No.674896, 690575 and 740055; the Ministerio de Economía y Competitividad of Spain under grants FIS2014-53371-C04, the Severo Ochoa Program SEV-2014-0398 and the María de Maetzu Program MDM-2016-0692;the GVA of Spain under grants PROMETEO/2016/120 and SEJI/2017/011; the Portuguese FCT under project PTDC/FIS-NUC/2525/2014, under project UID/FIS/04559/2013 to fund the activities of LIBPhys, and under grants PD/BD/105921/2014, SFRH/BPD/109180/2015 and SFRH/BPD/76842/2011; the U.S. Department of Energy under contracts number DE-AC02-07CH11359 (Fermi National Accelerator Laboratory), DE-FG02-13ER42020(Texas A&M) and DE-SC0017721 (University of Texas at Arlington); and the University of Texas at Arlington. DGD acknowledges Ramon y Cajal program (Spain) under contract number RYC-2015-18820. We also warmly acknowledge the Laboratori Nazionalidel Gran Sasso (LNGS) and the Dark Side collaboration for their help with TPB coatingof various parts of the NEXT-White TPC.
- Subjects :
- Electroluminiscència
Nuclear and High Energy Physics
Physics - Instrumentation and Detectors
Dark Matter and Double Beta Decay
FOS: Physical sciences
chemistry.chemical_element
Electron
Atomic
01 natural sciences
7. Clean energy
Mathematical Sciences
High Energy Physics - Experiment
TECNOLOGIA ELECTRONICA
High Energy Physics - Experiment (hep-ex)
Particle and Plasma Physics
Xenon
Ionization
0103 physical sciences
Dark Matter and Double Beta Decay (experiments)
Nuclear
lcsh:Nuclear and particle physics. Atomic energy. Radioactivity
Diffusion (business)
010306 general physics
Mathematical Physics
Physics
Quantum Physics
010308 nuclear & particles physics
Resolution (electron density)
Molecular
Física
Nuclear energy
Instrumentation and Detectors (physics.ins-det)
Nuclear & Particles Physics
Particle correlations and fluctuations
85-05
Electroluminescence
chemistry
Rare decay
Yield (chemistry)
Photon production
Physical Sciences
Scintillation counter
Energia nuclear
lcsh:QC770-798
Atomic physics
Energy (signal processing)
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Biblos-e Archivo. Repositorio Institucional de la UAM, instname, Journal of High Energy Physics, RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia, Journal of High Energy Physics, Vol 2019, Iss 1, Pp 1-23 (2019), Journal of High Energy Physics, vol 2019, iss 1, Digital.CSIC. Repositorio Institucional del CSIC, Journal of High Energy Physics, 2019, núm. art. 27, Articles publicats (D-EMCI), DUGiDocs – Universitat de Girona, Zaguán. Repositorio Digital de la Universidad de Zaragoza
- Accession number :
- edsair.doi.dedup.....8f21ea0309b79de319fa840f096e3a75