14 results on '"Fernandez‐Gonzalo, Rodrigo"'
Search Results
2. Myeloid cell infiltration in skeletal muscle after combined hindlimb unloading and radiation exposure in mice.
- Author
-
Emanuelsson, Eric B., Baselet, Bjorn, Neefs, Mieke, Baatout, Sarah, Proesmans, Brit, Daenen, Lisa, Sundberg, Carl Johan, Rundqvist, Helene, and Fernandez-Gonzalo, Rodrigo
- Subjects
SKELETAL muscle ,MYELOID cells ,HINDLIMB ,LOADING & unloading ,SPACE environment ,TOLL-like receptors - Abstract
The skeletal muscle and the immune system are heavily affected by the space environment. The crosstalk between these organs, although established, is not fully understood. This study determined the nature of immune cell changes in the murine skeletal muscle following (hindlimb) unloading combined with an acute session of irradiation (HLUR). Our findings show that 14 days of HLUR induces a significant increase of myeloid immune cell infiltration in skeletal muscle. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
3. Extracellular vesicle characteristics and microRNA content in cerebral palsy and typically developed individuals at rest and in response to aerobic exercise
- Author
-
Vechetti, Ivan J., Norrbom, Jessica, Alkner, Björn, Hjalmarsson, Emma, Palmcrantz, Alexandra, Pontén, Eva, Pingel, Jessica, von Walden, Ferdinand, and Fernandez-Gonzalo, Rodrigo
- Subjects
exosomes ,endurance exercise ,miR-486 ,skeletal muscle ,frame running ,Idrottsvetenskap ,Sport and Fitness Sciences - Abstract
In this study, the properties of circulating extracellular vesicles (EVs) were examined in cerebral palsy (CP) and typically developed (TD) individuals at rest and after aerobic exercise, focusing on the size, concentration, and microRNA cargo of EVs. Nine adult individuals with CP performed a single exercise bout consisting of 45 min of Frame Running, and TD participants completed either 45 min of cycling (n = 10; TD EX) or were enrolled as controls with no exercise (n = 10; TD CON). Blood was drawn before and 30 min after exercise and analyzed for EV concentration, size, and microRNA content. The size of EVs was similar in CP vs. TD, and exercise had no effect. Individuals with CP had an overall lower concentration (∼25%, p < 0.05) of EVs. At baseline, let-7a, let-7b and let-7e were downregulated in individuals with CP compared to TD (p < 0.05), while miR-100 expression was higher, and miR-877 and miR-4433 lower in CP compared to TD after exercise (p < 0.05). Interestingly, miR-486 was upregulated ∼2-fold in the EVs of CP vs. TD both at baseline and after exercise. We then performed an in silico analysis of miR-486 targets and identified the satellite cell stemness factor Pax7 as a target of miR-486. C2C12 myoblasts were cultured with a miR-486 mimetic and RNA-sequencing was performed. Gene enrichment analysis revealed that several genes involved in sarcomerogenesis and extracellular matrix (ECM) were downregulated. Our data suggest that circulating miR-486 transported by EVs is elevated in individuals with CP and that miR-486 alters the transcriptome of myoblasts affecting both ECM- and sarcomerogenesis-related genes, providing a link to the skeletal muscle alterations observed in individuals with CP In this study, the properties of circulating extracellular vesicles (EVs) were examined in cerebral palsy (CP) and typically developed (TD) individuals at rest and after aerobic exercise, focusing on the size, concentration, and microRNA cargo of EVs. Nine adult individuals with CP performed a single exercise bout consisting of 45 min of Frame Running, and TD participants completed either 45 min of cycling (n = 10; TD EX) or were enrolled as controls with no exercise (n = 10; TD CON). Blood was drawn before and 30 min after exercise and analyzed for EV concentration, size, and microRNA content. The size of EVs was similar in CP vs. TD, and exercise had no effect. Individuals with CP had an overall lower concentration (∼25%, p < 0.05) of EVs. At baseline, let-7a, let-7b and let-7e were downregulated in individuals with CP compared to TD (p < 0.05), while miR-100 expression was higher, and miR-877 and miR-4433 lower in CP compared to TD after exercise (p < 0.05). Interestingly, miR-486 was upregulated ∼2-fold in the EVs of CP vs. TD both at baseline and after exercise. We then performed an in silico analysis of miR-486 targets and identified the satellite cell stemness factor Pax7 as a target of miR-486. C2C12 myoblasts were cultured with a miR-486 mimetic and RNA-sequencing was performed. Gene enrichment analysis revealed that several genes involved in sarcomerogenesis and extracellular matrix (ECM) were downregulated. Our data suggest that circulating miR-486 transported by EVs is elevated in individuals with CP and that miR-486 alters the transcriptome of myoblasts affecting both ECM- and sarcomerogenesis-related genes, providing a link to the skeletal muscle alterations observed in individuals with CP.
- Published
- 2022
4. RNA-Sequencing Muscle Plasticity to Resistance Exercise Training and Disuse in Youth and Older Age.
- Author
-
Fernandez-Gonzalo, Rodrigo, Willis, Craig R. G., Etheridge, Timothy, and Deane, Colleen S.
- Subjects
- *
RNA sequencing , *EXERCISE , *SKELETAL muscle , *TRANSCRIPTOMES , *DNA microarrays - Abstract
Maintenance of skeletal muscle mass and function is critical to health and wellbeing throughout the lifespan. However, disuse through reduced physical activity (e.g., sedentarism), immobilisation, bed rest or microgravity has significant adverse effects on skeletal muscle health. Conversely, resistance exercise training (RET) induces positive muscle mass and strength adaptations. Several studies have employed microarray technology to understand the transcriptional basis of muscle atrophy and hypertrophy after disuse and RET, respectively, to devise fully effective therapeutic interventions. More recently, rapidly falling costs have seen RNA-sequencing (RNA-seq) increasingly applied in exploring muscle adaptations to RET and disuse. The aim of this review is to summarise the transcriptional responses to RET or disuse measured via RNA-seq in young and older adults. We also highlight analytical considerations to maximise the utility of RNA-seq in the context of skeletal muscle research. The limited number of muscle transcriptional signatures obtained thus far with RNA-seq are generally consistent with those obtained with microarrays. However, RNA-seq may provide additional molecular insight, particularly when combined with data-driven approaches such as correlation network analyses. In this context, it is essential to consider the most appropriate study design parameters as well as bioinformatic and statistical approaches. This will facilitate the use of RNA-seq to better understand the transcriptional regulators of skeletal muscle plasticity in response to increased or decreased use. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
5. Single-cell sequencing deconvolutes cellular responses to exercise in human skeletal muscle.
- Author
-
Lovrić, Alen, Rassolie, Ali, Alam, Seher, Mandić, Mirko, Saini, Amarjit, Altun, Mikael, Fernandez-Gonzalo, Rodrigo, Gustafsson, Thomas, and Rullman, Eric
- Subjects
SKELETAL muscle ,MYOBLASTS ,GENETIC transcription regulation ,CELL populations ,PROGENITOR cells ,PHYSICAL activity ,SARCOPENIA - Abstract
Skeletal muscle adaptations to exercise have been associated with a range of health-related benefits, but cell type-specific adaptations within the muscle are incompletely understood. Here we use single-cell sequencing to determine the effects of exercise on cellular composition and cell type-specific processes in human skeletal muscle before and after intense exercise. Fifteen clusters originating from six different cell populations were identified. Most cell populations remained quantitatively stable after exercise, but a large transcriptional response was observed in mesenchymal, endothelial, and myogenic cells, suggesting that these cells are specifically involved in skeletal muscle remodeling. We found three subpopulations of myogenic cells characterized by different maturation stages based on the expression of markers such as PAX7, MYOD1, TNNI1, and TNNI2. Exercise accelerated the trajectory of myogenic progenitor cells towards maturation by increasing the transcriptional features of fast- and slow-twitch muscle fibers. The transcriptional regulation of these contractile elements upon differentiation was validated in vitro on primary myoblast cells. The cell type-specific adaptive mechanisms induced by exercise presented here contribute to the understanding of the skeletal muscle adaptations triggered by physical activity and may ultimately have implications for physiological and pathological processes affecting skeletal muscle, such as sarcopenia, cachexia, and glucose homeostasis. Single-cell RNA-sequencing of human skeletal muscle before and after exercise highlights how physical activity changes the composition and transcriptomic profile of muscle tissue. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
6. Epigenetic Marks at the Ribosomal DNA Promoter in Skeletal Muscle Are Negatively Associated With Degree of Impairment in Cerebral Palsy
- Author
-
von Walden, Ferdinand, Fernandez-Gonzalo, Rodrigo, Pingel, Jessica, McCarthy, John, Stål, Per, and Pontén, Eva
- Subjects
cerebral palsy ,DNA methylation ,epigenetics ,Pediatrics, Perinatology and Child Health ,ribosome biogenesis ,Pediatrik ,Brief Research Report ,skeletal muscle ,Pediatrics - Abstract
Introduction: Cerebral palsy (CP) is the most common motor impairment in children. Skeletal muscles in individuals with CP are typically weak, thin, and stiff. Whether epigenetic changes at the ribosomal DNA (rDNA) promoter are involved in this dysregulation remains unknown. Methods: Skeletal muscle samples were collected from 19 children with CP and 10 typically developed (TD) control children. Methylation of the rDNA promoter was analyzed using the Agena Epityper Mass array and gene expression by qRT-PCR. Results: Biceps brachii muscle ribosome biogenesis was suppressed in CP as compared to TD. Average methylation of the rDNA promoter was not different between CP and TD but negatively correlated to elbow flexor contracture in the CP group. Discussions: We observed a negative correlation between rDNA promoter methylation and degree of muscle contracture in the CP group. Children with CP with more severe motor impairment had less methylation of the rDNA promoter compared to less affected children. This finding suggests the importance of neural input and voluntary muscle movements for promoter methylation to occur in the biceps muscle.
- Published
- 2020
7. Reduced mitochondrial DNA and OXPHOS protein content in skeletal muscle of children with cerebral palsy.
- Author
-
von Walden, Ferdinand, Vechetti, Ivan J, Englund, Davis, Figueiredo, Vandré C, Fernandez‐Gonzalo, Rodrigo, Murach, Kevin, Pingel, Jessica, Mccarthy, John J, Stål, Per, and Pontén, Eva
- Subjects
CHILDREN with cerebral palsy ,TYPE 2 diabetes ,MITOCHONDRIAL DNA ,SKELETAL muscle ,SPECIFIC language impairment in children ,PGC-1 protein ,AEROBIC capacity - Abstract
Skeletal muscle in individuals with CP also contains lower amounts of mtDNA, potentially indicating fewer mitochondria in CP skeletal muscle compared with typically developing muscle. We compared skeletal muscle samples from children with cerebral palsy (CP) and typically developing children and observed evidence of reduced mtDNA and OXPHOS protein content in CP skeletal muscle, indicating reduced mitochondrial abundance. Cerebral palsy (CP) muscle contains fewer energy-generating organelles than typically developing muscle. [Extracted from the article]
- Published
- 2021
- Full Text
- View/download PDF
8. Acute endurance exercise stimulates circulating levels of mitochondrial-derived peptides in humans.
- Author
-
von Walden, Ferdinand, Fernandez-Gonzalo, Rodrigo, Norrbom, Jessica, Emanuelsson, Eric B., Figueiredo, Vandré C., Gidlund, Eva-Karin, Norrbrand, Lena, Chang Liu, Sandström, Philip, Hansson, Björn, Junxiang Wan, Cohen, Pinchas, and Alkner, Björn
- Subjects
TYPE 2 diabetes ,CELL survival ,SKELETAL muscle ,CHRONIC kidney failure ,PEPTIDES - Abstract
Mitochondrial-derived peptides (MDPs) humanin (HN) and mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) are involved in cell survival, suppression of apoptosis, and metabolism. Circulating levels of MDPs are altered in chronic diseases such as diabetes type 2 and chronic kidney disease. Whether acute resistance (RE) or endurance (EE) exercise modulates circulating levels of HN and MOTS-c in humans is unknown. Following familiarization, subjects were randomized to EE (n = 10, 45 min cycling at 70% of estimated VO
2 max), RE (n = 10, 4 sets x 7RM, leg press and knee extension), or control (CON, n = 10). Skeletal muscle biopsies and blood samples were collected before and at 30 min and 3 h following exercise. Plasma concentration of HN and MOTS-c, skeletal muscle MOTS-c as well as gene expression of exercise-related genes were analyzed. Acute EE and RE promoted changes in skeletal muscle gene expression typically seen in response to each exercise modality (c-Myc, 45S prerRNA, PGC-1a-total, and PGC-1a-ex1b). At rest, circulating levels of HN were positively correlated to MOTS-c levels and age. Plasma levels of MDPs were not correlated to fitness outcomes [VO2 max, leg strength, or muscle mitochondrial (mt) DNA copy number]. Circulating levels of HN were significantly elevated by acute EE but not RE. MOTS-C levels showed a trend to increase after EE. These results indicate that plasma MDP levels are not related to fitness status but that acute EE increases circulating levels of MDPs, in particular HN. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
9. Substantial and Reproducible Individual Variability in Skeletal Muscle Outcomes in the Cross-Over Designed Planica Bed Rest Program.
- Author
-
Fernandez-Gonzalo, Rodrigo, McDonnell, Adam C., Simpson, Elizabeth J., Macdonald, Ian A., Rullman, Eric, and Mekjavic, Igor B.
- Subjects
SKELETAL muscle ,BED rest ,CALF muscles ,STANDARD deviations ,REGRESSION analysis - Abstract
To evaluate the individual responses in skeletal muscle outcomes following bed rest, data from three studies (21-day PlanHab; 10-day FemHab and LunHab) were combined. Subjects (n = 35) participated in three cross-over campaigns within each study: normoxic (NBR) and hypoxic bed rest (HBR), and hypoxic ambulation (HAMB; used as control). Individual variability (SD
IR ) was investigated as √(SD Exp 2 –SD Con 2), where SDExp and SDCon are the standard deviations of the change score (i.e., post – pre) in the experimental (NBR and HBR) and the control (HAMB) groups, respectively. Repeatability and moderators of the individual variability were explored. Significant SDIR was detected for knee extension torque, and thigh and calf muscle area, which translated into an individual response ranging from 3 to −17% for knee extension torque, −2 to −12% for calf muscle area, and −1 to −8% for thigh muscle area. Strong correlations were found for changes in NBR vs. HBR (i.e., repeatability) in thigh and calf muscle area (r = 0.65–0.75, P < 0.0001). Change-scores in knee extension torque, and thigh and calf muscle area strongly correlated with baseline values (P < 0.001; r between −0.5 and −0.9). Orthogonal partial least squares regression analysis explored if changes in the investigated variables could predict calf muscle area alterations. This analysis indicated that 43% of the variance in calf muscle area could be attributed to changes in all of the other variables. This is the first study using a validated methodology to report clinically relevant individual variability after bed rest in knee extension torque, calf muscle area, and (to a lower extent) thigh muscle area. Baseline values emerged as a moderator of the individual response, and a global bed rest signature served as a moderately strong predictor of the individual variation in calf muscle area alterations. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
10. Genetic and epigenetic regulation of skeletal muscle ribosome biogenesis with exercise.
- Author
-
Figueiredo, Vandré C., Wen, Yuan, Alkner, Björn, Fernandez‐Gonzalo, Rodrigo, Norrbom, Jessica, Vechetti, Ivan J., Valentino, Taylor, Mobley, C. Brooks, Zentner, Gabriel E., Peterson, Charlotte A., McCarthy, John J., Murach, Kevin A., and Walden, Ferdinand
- Subjects
ORGANELLE formation ,GENETIC regulation ,SKELETAL muscle ,RIBOSOMAL DNA ,CHLOROPLAST DNA ,RESISTANCE training - Abstract
Key points: Ribosome biogenesis and MYC transcription are associated with acute resistance exercise (RE) and are distinct from endurance exercise in human skeletal muscle throughout a 24 h time course of recovery.A PCR‐based method for relative ribosomal DNA (rDNA) copy number estimation was validated by whole genome sequencing and revealed that rDNA dosage is positively correlated with ribosome biogenesis in response to RE.Acute RE modifies rDNA methylation patterns in enhancer, intergenic spacer and non‐canonical MYC‐associated regions, but not the promoter.Myonuclear‐specific rDNA methylation patterns with acute mechanical overload in mice corroborate and expand on rDNA findings with RE in humans.A genetic predisposition for hypertrophic responsiveness may exist based on rDNA gene dosage. Ribosomes are the macromolecular engines of protein synthesis. Skeletal muscle ribosome biogenesis is stimulated by exercise, although the contribution of ribosomal DNA (rDNA) copy number and methylation to exercise‐induced rDNA transcription is unclear. To investigate the genetic and epigenetic regulation of ribosome biogenesis with exercise, a time course of skeletal muscle biopsies was obtained from 30 participants (18 men and 12 women; 31 ± 8 years, 25 ± 4 kg m–2) at rest and 30 min, 3 h, 8 h and 24 h after acute endurance (n = 10, 45 min cycling, 70% V̇O2max) or resistance exercise (n = 10, 4 × 7 × 2 exercises); 10 control participants underwent biopsies without exercise. rDNA transcription and dosage were assessed using quantitative PCR and whole genome sequencing. rDNA promoter methylation was investigated using massARRAY EpiTYPER and global rDNA CpG methylation was assessed using reduced‐representation bisulphite sequencing. Ribosome biogenesis and MYC transcription were associated primarily with resistance but not endurance exercise, indicating preferential up‐regulation during hypertrophic processes. With resistance exercise, ribosome biogenesis was associated with rDNA gene dosage, as well as epigenetic changes in enhancer and non‐canonical MYC‐associated areas in rDNA, but not the promoter. A mouse model of in vivo metabolic RNA labelling and genetic myonuclear fluorescence labelling validated the effects of an acute hypertrophic stimulus on ribosome biogenesis and Myc transcription, and also corroborated rDNA enhancer and Myc‐associated methylation alterations specifically in myonuclei. The present study provides the first information on skeletal muscle genetic and rDNA gene‐wide epigenetic regulation of ribosome biogenesis in response to exercise, revealing novel roles for rDNA dosage and CpG methylation. Key points: Ribosome biogenesis and MYC transcription are associated with acute resistance exercise (RE) and are distinct from endurance exercise in human skeletal muscle throughout a 24 h time course of recovery.A PCR‐based method for relative ribosomal DNA (rDNA) copy number estimation was validated by whole genome sequencing and revealed that rDNA dosage is positively correlated with ribosome biogenesis in response to RE.Acute RE modifies rDNA methylation patterns in enhancer, intergenic spacer and non‐canonical MYC‐associated regions, but not the promoter.Myonuclear‐specific rDNA methylation patterns with acute mechanical overload in mice corroborate and expand on rDNA findings with RE in humans.A genetic predisposition for hypertrophic responsiveness may exist based on rDNA gene dosage. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
11. Muscle2View, a CellProfiler pipeline for detection of the capillary-to-muscle fiber interface and high-content quantification of fiber type-specific histology.
- Author
-
Sanz, Gema, Martínez-Aranda, Luis Manuel, Tesch, Per A., Fernandez-Gonzalo, Rodrigo, and Lundberg, Tommy R.
- Subjects
HISTOLOGY ,SKELETAL muscle ,CROSS-sectional imaging ,IMMUNOHISTOCHEMISTRY ,CAPILLARIES - Abstract
Because manual immunohistochemical analysis of features such as skeletal muscle fiber typing, capillaries, myonuclei, and fiber size-related parameters is time consuming and prone to user subjectivity, automatic computational methods could allow for faster and more objective evaluation. Here, we developed Muscle2View, a free CellProfiler-based pipeline that integrates all key fiber-morphological variables, including the novel quantification of the capillary-to-fiber interface, in one single tool. Provided that the images are of sufficient quality and the settings are configured for the specific study, the pipeline allows for automatic and unsupervised analysis of fiber borders, myonuclei, capillaries, and morphometric parameters in a fiber type-specific manner from large batches of images in <10 min/tissue sample. The novel identification of the capillary-to-fiber interface allowed for the calculation of microvascular factors such as capillary contacts (CC), individual capillary-to-fiber ratio (C/Fi), and capillary-to-fiber perimeter exchange (CFPE) index. When comparing the Muscle2View pipeline to manual or semiautomatic analysis, overall the results revealed strong correlations. For several variables, however, there were differences (5-15%) between values computed by manual counting and Muscle2View, suggesting that the methods should not necessarily be used interchangeably. Collectively, we demonstrate that the Muscle2View pipeline can provide unbiased and high-content analysis of muscle cross-sectional immunohistochemistry images. In addition to the classical morphological measurements, the Muscle2View can identify the complex capillary-to-fiber network and myonuclear density in a fiber type-specific manner. This robust analysis is done in one single run within a user-friendly and flexible environment based on the free and widely used image software CellProfiler. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
12. Skeletal muscle signaling responses to resistance exercise of the elbow extensors are not compromised by a preceding bout of aerobic exercise.
- Author
-
Hansson, Björn, Olsen, Luke A., Nicoll, Justin X., von Walden, Ferdinand, Melin, Michael, Strömberg, Anna, Rullman, Eric, Gustafsson, Thomas, Fry, Andrew C., Fernandez-Gonzalo, Rodrigo, and Lundberg, Tommy R.
- Subjects
AEROBIC exercises ,RIBOSOMAL proteins ,ISOMETRIC exercise ,SKELETAL muscle ,FOCAL adhesion kinase ,TRICEPS - Abstract
The current study examined the effects of a preceding bout of aerobic exercise (AE) on subsequent molecular signaling to resistance exercise (RE) of the elbow extensors. Eleven men performed unilateral elbow-extensor AE (~45 min at 70% peak workload) followed by unilateral RE (4 × 7 maximal repetitions) for both arms. Thus, one arm performed AE+RE interspersed with 15 min recovery, whereas the other arm conducted RE alone. Muscle biopsies were taken from the triceps brachii of each arm immediately before (PRE) and 15 min (POST1) and 3 h (POST2) after RE. Molecular markers involved in translation initiation, protein breakdown, mechanosignaling, and ribosome biogenesis were analyzed. Peak power during RE was reduced by 24% (±19%) when preceded by AE (P < 0.05). Increases in PGC1a and MuRF1 expression were greater from PRE to POST2 in AE+RE compared with RE (18-vs. 3.5- and 4- vs. 2-fold, respectively, interaction, P < 0.05). Myostatin mRNA decreased in both arms (P < 0.05). Phosphorylation of AMPK (Thr
172 ) increased (2.5-fold), and 4E-BP1 (Thr37/46 ) decreased (2.0-fold), after AE (interactions, P < 0.05). p70 S6K, yesassociated protein, and c-Jun NH2-terminal kinase phosphorylation were unaltered, whereas focal adhesion kinase decreased ~1.5-fold, and β1 - integrin increased ~1.3- to 1.5-fold, (time effect, P < 0.05). Abundance of 45S pre-ribosomal (r)RNA (internally transcribed spacer, ITS) decreased (~30%) after AE (interaction, P < 0.05), whereas CMYC mRNA was greater in AE+RE compared with RE (12-fold, P < 0.05). POLR1B abundance increased after both AE+RE and RE. All together, our results suggest that a single bout of AE leads to an immediate decrease in signaling for translation initiation and ribosome biogenesis. Yet, this did not translate into altered RE-induced signaling during the 3-h postexercise recovery period. [ABSTRACT FROM AUTHOR]- Published
- 2019
- Full Text
- View/download PDF
13. Clinical Applications of Iso-Inertial, Eccentric-Overload (YoYo™) Resistance Exercise.
- Author
-
Tesch, Per A., Fernandez-Gonzalo, Rodrigo, and Lundberg, Tommy R.
- Subjects
PHYSICALLY active people ,ISOMETRIC exercise ,SKELETAL muscle ,STRENGTH training - Abstract
In the quest for a viable non-gravity dependent method to "lift weights" in space, our laboratory introduced iso-inertial resistance (YoYo™) exercise using spinning flywheel(s), more than 25 years ago. After being thoroughly tested in individuals subjected to various established spaceflight analogs, a multi-mode YoYo™ exercise apparatus was eventually installed on the International Space Station in 2009. The method, applicable to any muscle group, provides accommodated resistance and optimal muscle loading through the full range of motion of concentric actions, and brief episodes of eccentric overload. This exercise intervention has found terrestrial applications and shown success in enhancing sports performance and preventing injury and aiding neurological or orthopedic rehabilitation. Research has proven that this technique offers unique physiological responses not possible with other exercise hardware solutions. This paper provides a brief overview of research that has made use, and explored the efficacy, of this method in healthy sedentary or physically active individuals and populations suffering from muscle wasting, disease or injury. While the collective evidence to date suggests YoYo™ offers a potent stimulus to optimize the benefits of resistance exercise, systematic research to support clinical use of this method has only begun to emerge. Thus, we also offer perspectives on unresolved issues, unexplored applications for clinical conditions, and how this particular exercise paradigm could be implemented in future clinical research and eventually being prescribed. Fields of particular interest are those aimed at promoting muscle health by preventing injury or combating muscle wasting and neurological or metabolic dysfunction due to aging or illness, or those serving in rehabilitation following trauma and/or surgery. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
14. Metabolic adaptations in skeletal muscle after 84 days of bed rest with and without concurrent flywheel resistance exercise.
- Author
-
Irimia, José M., Guerrero, Mario, Rodriguez-Miguelez, Paula, Cadefau, Joan A., Tesch, Per A., Cussó, Roser, and Fernandez-Gonzalo, Rodrigo
- Subjects
SKELETAL muscle ,METABOLISM ,PHYSICAL fitness - Abstract
As metabolic changes in human skeletal muscle after long-term (simulated) spaceflight are not well understood, this study examined the effects of long-term microgravity, with and without concurrent resistance exercise, on skeletal muscle oxidative and glycolytic capacity. Twenty-one men were subjected to 84 days head-down tilt bed rest with (BRE; n = 9) or without (BR; n = 12) concurrent flywheel resistance exercise. Activity and gene expression of glycogen synthase, glycogen phosphorylase (GPh), hexokinase, phosphofructokinase- 1 (PFK-1), and citrate synthase (CS), as well as gene expression of succinate dehydrogenase (SDH), vascular endothelial growth factor (VEFG), peroxisome proliferator-activated receptor gamma coactivator- 1 (PGC-1α), and myostatin, were analyzed in samples from m. vastus lateralis collected before and after bed rest. Activity and gene expression of enzymes controlling oxidative metabolism (CS, SDH) decreased in BR but were partially maintained in BRE. Activity of enzymes regulating anaerobic glycolysis (GPh, PFK-1) was unchanged in BR. Resistance exercise increased the activity of GPh. PGC-1α and VEGF expression decreased in both BR and BRE. Myostatin increased in BR but decreased in BRE after bed rest. The analyses of these unique samples indicate that long-term microgravity induces marked alterations in the oxidative, but not the glycolytic, energy system. The proposed flywheel resistance exercise was effective in counteracting some of the metabolic alterations triggered by 84-day bed rest. Given the disparity between gene expression vs. enzyme activity in several key metabolic markers, posttranscriptional mechanisms should be explored to fully evaluate metabolic adaptations to long-term microgravity with/without exercise countermeasures in human skeletal muscle. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.