30 results on '"Curceanu, C"'
Search Results
2. Are collapse models testable with quantum oscillating systems? The case of neutrinos, kaons, chiral molecules
- Author
-
Bahrami, M., Donadi, S., Ferialdi, L., Bassi, A., Curceanu, C., Di Domenico, A., Hiesmayr, B. C., Bahrami, Mohammad, Donadi, Sandro, Ferialdi, Luca, Bassi, Angelo, C., Curceanu, A., Di Domenico, and B. C., Hiesmayr
- Subjects
Quantum Physics ,Quantum information ,Quantum foundation ,Models of spontaneous wave function collapse ,FOS: Physical sciences ,Quantum mechanics ,Quantum mechanic ,Article ,Quantum foundations ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,Statistical physics ,Quantum Physics (quant-ph) ,Theoretical physics - Abstract
Collapse models provide a theoretical framework for understanding how classical world emerges from quantum mechanics. Their dynamics preserves (practically) quantum linearity for microscopic systems, while it becomes strongly nonlinear when moving towards macroscopic scale. The conventional approach to test collapse models is to create spatial superpositions of mesoscopic systems and then examine the loss of interference, while environmental noises are engineered carefully. Here we investigate a different approach: We study systems that naturally oscillate --creating quantum superpositions-- and thus represent a natural case-study for testing quantum linearity: neutrinos, neutral mesons, and chiral molecules. We will show how spontaneous collapses affect their oscillatory behavior, and will compare them with environmental decoherence effects. We will show that, contrary to what previously predicted, collapse models cannot be tested with neutrinos. The effect is stronger for neutral mesons, but still beyond experimental reach. Instead, chiral molecules can offer promising candidates for testing collapse models., accepted by NATURE Scientific Reports, 12 pages, 1 figures, 2 tables
- Published
- 2013
3. VOXES, A NEW HIGH-RESOLUTION X-RAY SPECTROMETER FOR LOW YIELD MEASUREMENTS WITH DIFFUSED SOURCES.
- Author
-
SCORDO, A., SHI, H., CURCEANU, C., MILIUCCI, M., SIRGHI, F., and ZMESKAL, J.
- Subjects
X-rays ,SYNCHROTRONS ,QUANTUM mechanics ,PARTICLE physics ,IONIZING radiation - Abstract
The VOXES project's goal is to realize the first prototype of a highresolution and high-precision X-ray spectrometer for diffused sources, using Highly Annealed Pyrolitic Graphite (HAPG) crystals combined with precision position detectors. The aim is to deliver a cost-effective and easy to handle system having an energy resolution at the level of few eV for X-ray energies from about 2 keV up to tens of keV. There are many applications of the proposed spectrometer, going from fundamental physics (precision measurements of exotic atoms at DAΦNE collider and J-PARC, precision measurement of the K
- mass solving the existing puzzle, quantum mechanics tests) to synchrotron radiation and applications (X-FEL), astronomy, medicine and industry. Here, the basic concept of such a spectrometer and the first results from a measurement of the characteristic Cu Kα1 and Kα2 X-ray lines are presented. [ABSTRACT FROM AUTHOR]- Published
- 2017
- Full Text
- View/download PDF
4. Spontaneously Emitted X-rays: An Experimental Signature of the Dynamical Reduction Models.
- Author
-
Curceanu, C., Bartalucci, S., Bassi, A., Bazzi, M., Bertolucci, S., Berucci, C., Bragadireanu, A., Cargnelli, M., Clozza, A., De Paolis, L., Di Matteo, S., Donadi, S., D'Uffizi, A., Egger, J.-P., Guaraldo, C., Iliescu, M., Ishiwatari, T., Laubenstein, M., Marton, J., and Milotti, E.
- Subjects
- *
X-ray research , *WAVE functions , *SCHRODINGER equation , *PARTIAL differential equations , *QUANTUM mechanics - Abstract
We present the idea of searching for X-rays as a signature of the mechanism inducing the spontaneous collapse of the wave function. Such a signal is predicted by the continuous spontaneous localization theories, which are solving the 'measurement problem' by modifying the Schrödinger equation. We will show some encouraging preliminary results and discuss future plans and strategy. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
5. BEYOND QUANTUM MECHANICS? HUNTING THE 'IMPOSSIBLE' ATOMS -- PAULI EXCLUSION PRINCIPLE VIOLATION AND SPONTANEOUS COLLAPSE OF THE WAVE FUNCTION AT TEST.
- Author
-
PISCICCHIA, K., CURCEANU, C., BARTALUCCI, S., BASSIC, A., BERTOLUCCI, S., BERUCCI, C., BRAGADIREANU, A. M., CARGNELLI, M., CLOZZA, A., DE PAOLIS, L., DI MATTEO, S., DONADI, S., D'UFFIZI, A., EGGER, J.-P., GUARALDO, C., ILIESCU, M., ISHIWATARI, T., LAUBENSTEINI, M., MARTONE, J., and MILOTTI, E.
- Subjects
- *
QUANTUM mechanics , *PAULI exclusion principle , *WAVE functions , *STANDARD model (Nuclear physics) , *PHYSICS experiments - Abstract
The development of mathematically complete and consistent models solving the so-called "measurement problem", strongly renewed the interest of the scientific community for the foundations of quantum mechanics, among these the Dynamical Reduction Models posses the unique characteristic to be experimentally testable. In the first part of the paper, an upper limit on the reduction rate parameter of such models will be obtained, based on the analysis of the X-ray spectrum emitted by an isolated slab of germanium and measured by the IGEX experiment. The second part of the paper is devoted to present the results of the VIP (Violation of the Pauli exclusion principle) experiment and to describe its recent upgrade. The VIP experiment established a limit on the probability that the Pauli Exclusion Principle (PEP) is violated by electrons, using the very clean method of searching for PEP forbidden atomic transitions in copper. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
6. Underground test of gravity-related wave function collapse
- Author
-
Matthias Laubenstein, Angelo Bassi, Catalina Curceanu, Kristian Piscicchia, Sandro Donadi, Lajos Diósi, Donadi, S., Piscicchia, K., Curceanu, C., Diosi, L., Laubenstein, M., and Bassi, A.
- Subjects
Physics ,Quantum Physics ,Quantum superposition ,FOS: Physical sciences ,General Physics and Astronomy ,Collapse (topology) ,01 natural sciences ,Measure (mathematics) ,Upper and lower bounds ,010305 fluids & plasmas ,Superposition principle ,Orders of magnitude (time) ,Quantum mechanics ,0103 physical sciences ,Quantum Physics (quant-ph) ,010306 general physics ,Wave function collapse ,Randomness ,Quantum Mechanics - Abstract
Roger Penrose proposed that a spatial quantum superposition collapses as a back-reaction from spacetime, which is curved in different ways by each branch of the superposition. In this sense, one speaks of gravity-related wave function collapse. He also provided a heuristic formula to compute the decay time of the superposition $\mathord{-}$ similar to that suggested earlier by Lajos Di\'osi, hence the name Di\'osi-Penrose model. The collapse depends on the effective size of the mass density of particles in the superposition, and is random: this randomness shows up as a diffusion of the particles' motion, resulting, if charged, in the emission of radiation. Here, we compute the radiation emission rate, which is faint but detectable. We then report the results of a dedicated experiment at the Gran Sasso underground laboratory to measure this radiation emission rate. Our result sets a lower bound on the effective size of the mass density of nuclei, which is about three orders of magnitude larger than previous bounds. This rules out the natural parameter-free version of the Di\'osi-Penrose model., Comment: 66 pages, 7 figures
- Published
- 2020
7. Search for a remnant violation of the Pauli exclusion principle in a Roman lead target
- Author
-
Matthias Laubenstein, Marco Miliucci, Diana Sirghi, Michael Cargnelli, Massimiliano Bazzi, Dorel Pietreanu, Johann Marton, Luca De Paolis, C. Guaraldo, Florin Sirghi, Mario Bragadireanu, Edoardo Milotti, Catalina Curceanu, Kristian Piscicchia, Laura Sperandio, Raffaele Del Grande, Oton Vazquez Doce, Sergio Bertolucci, Johann Zmeskal, Carlo Fiorini, A. Amirkhani, Sergio Bartalucci, Hexi Shi, Alessandro Scordo, A. Pichler, M. Iliescu, Alberto Clozza, J. P. Egger, Piscicchia, K., Milotti, E., Amirkhani, A., Bartalucci, S., Bertolucci, S., Bazzi, M., Bragadireanu, M., Cargnelli, M., Clozza, A., Del Grande, R., Depaolis, L., Egger, J. -P., Fiorini, C., Guaraldo, C., Iliescu, M., Laubenstein, M., Marton, J., Miliucci, M., Pichler, A., Pietreanu, D., Scordo, A., Shi, H., Sirghi, D. L., Sirghi, F., Sperandio, L., Vazquezdoce, O., Zmeskal, J., and Curceanu, C.
- Subjects
Particle physics ,Physics and Astronomy (miscellaneous) ,Cosmic ray ,lcsh:Astrophysics ,02 engineering and technology ,Electron ,01 natural sciences ,Quantum mechanics ,Tests of fundamental symmetries ,Orders of magnitude (bit rate) ,X-ray ,symbols.namesake ,Lead (geology) ,Pauli exclusion principle ,X-rays ,0103 physical sciences ,lcsh:QB460-466 ,0202 electrical engineering, electronic engineering, information engineering ,Tests of fundamental symmetrie ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Engineering (miscellaneous) ,Physics ,010308 nuclear & particles physics ,Spin-statistics connection ,symbols ,lcsh:QC770-798 ,020201 artificial intelligence & image processing ,National laboratory - Abstract
In this paper we report on the results of two analyses of the data taken with a dedicated VIP-Lead experiment at the Gran Sasso National Laboratory of the INFN. We use measurements taken in an environment that is especially well screened from cosmic rays, with a metal target made of “Roman lead” which is characterised by a low level of intrinsic radioactivity. The analyses lead to an improvement, on the upper bounds of the Pauli Exclusion Principle violation for electrons, which is more than one (four) orders of magnitude, when the electron-atom interactions are described in terms of scatterings (or close encounters) respectively.
- Published
- 2020
- Full Text
- View/download PDF
8. New Concepts in Tests of the Pauli Exclusion Principle in Bulk Matter
- Author
-
J.-P. Egger, Marco Miliucci, Florin Sirghi, Mario Bragadireanu, C. Guaraldo, Sergio Bartalucci, R. Del Grande, L. De Paolis, Hexi Shi, Johann Marton, O. Vazquez Doce, M. Iliescu, Matthias Laubenstein, J. Zmeskal, Diana Sirghi, D. Pietreanu, M. Bazzi, Carlo Fiorini, Alberto Clozza, S. Bertolucci, Edoardo Milotti, A. Pichler, Alessandro Scordo, Catalina Curceanu, K. Piscicchia, Laura Sperandio, A. Amirkhani, Michael Cargnelli, Milotti, E., Piscicchia, K., Amirkhani, A., Bartalucci, S., Bertolucci, S., Bazzi, M., Bragadireanu, M., Cargnelli, M., Clozza, A., Del Grande, R., De Paolis, L., Egger, J. -P., Fiorini, C., Guaraldo, C., Iliescu, M., Laubenstein, M., Marton, J., Miliucci, M., Pichler, A., Pietreanu, D., Scordo, A., Shi, H., Sirghi, D. L., Sirghi, F., Sperandio, L., Vazquez Doce, O., Zmeskal, J., and Curceanu, C.
- Subjects
Physics ,electron diffusion ,010308 nuclear & particles physics ,quantum mechanics ,General Physics and Astronomy ,experimental tests ,quantum mechanic ,01 natural sciences ,Theoretical physics ,symbols.namesake ,Pauli exclusion principle ,electron capture ,experimental test ,0103 physical sciences ,symbols - Abstract
The standard scheme of several tests of the Pauli Exclusion Principle in bulk matter — both in the experiment and in the subsequent data analysis — has long been based on the seminal paper by E. Ramberg, G.A. Snow [Phys. Lett. B 238, 438 (1990)]. The ideas exposed in that paper are so simple and immediate that they have long gone unchallenged. However, while some of the underlying approximations are still valid, other parts of the article must be reconsidered. Here, we discuss some new concepts thatare related to the motion of the electrons in the test metal (the “target” of the experiment) and which have been recently studied in the framework of the VIP-2 Collaboration.
- Published
- 2020
9. The key role of the Silicon Drift Detectors in testing the Pauli Exclusion Principle for electrons: the VIP-2 experiment
- Author
-
Marco Miliucci, Johann Zmeskal, Sergio Bartalucci, Hexi Shi, Alessandro Scordo, Florin Sirghi, Mario Bragadireanu, J.-P. Egger, D. Pietreanu, S. Bertolucci, Matthias Laubenstein, A. Pichler, K. Piscicchia, Edoardo Milotti, T. Mazzocchi, Johann Marton, A. Amirkhani, Alberto Clozza, Laura Sperandio, M. Bazzi, R. Del Grande, L. De Paolis, Diana Sirghi, C. Guaraldo, Catalina Curceanu, Michael Cargnelli, Carlo Fiorini, M. Veith, M. Iliescu, O. Vazquez Doce, Paolis, L De, Amirkhani, A, Bartalucci, S, Bertolucci, S, Bazzi, M, Bragadireanu, M, Cargnelli, M, Clozza, A, Curceanu, C, Grande, R Del, Egger, J P, Fiorini, C, Guaraldo, C, Iliescu, M, Laubenstein, M, Marton, J, Mazzocchi, T, Miliucci, M, Milotti, E, Pichler, A, Pietreanu, D, Piscicchia, K, Scordo, A, Shi, H, Sirghi, D L, Sirghi, F, Sperandio, L, Vazquez Doce, O, Veith, M, and Zmeskal, J
- Subjects
Physics ,Paper ,History ,Silicon ,010308 nuclear & particles physics ,Detector ,chemistry.chemical_element ,Electron ,01 natural sciences ,Quantum mechanic ,Quantum mechanics ,Experimental tests ,Spin-statistics connection ,Computer Science Applications ,Education ,ddc ,symbols.namesake ,Pauli exclusion principle ,chemistry ,0103 physical sciences ,symbols ,Key (cryptography) ,010306 general physics - Abstract
The VIP experiment performed an accurate investigation of the Pauli Exclusion Principle for electrons. The apparatus was installed in the Gran Sasso Laboratories of the National Institute of Nuclear Physic in Italy, an underground environment with an extremely low cosmic background. The aim of the experiment was to test the Pauli Exclusion Principle for electrons in a copper target circulated by a Direct Current (DC) current, searching for X-rays emission due to an atomic transition forbidden by Pauli exclusion principle, from the L shell to the K shell of copper when the K shell is already occupied by two electrons. VIP set an upper limit on the Pauli exclusion principle violation probability 1/2β 2 –29. The goal of the upgraded VIP-2 experiment, presently in data taking at Gran Sasso Laboratories, is to improve this limit by two orders of magnitude. The VIP-2 experimental apparatus, in which the Silicon Drift Detectors have the key role of X-ray detectors, and preliminary results are presented.
- Published
- 2020
10. Testing the Pauli Exclusion Principle in the Cosmic Silence
- Author
-
Florin Sirghi, Michael Cargnelli, Matthias Laubenstein, M. Bazzi, M. Iliescu, J.-P. Egger, Hexi Shi, Alberto Clozza, L. De Paolis, Diana Sirghi, Carlo Fiorini, C. Guaraldo, Mario Bragadireanu, Marco Miliucci, O. Vazquez Doce, Edoardo Milotti, J. Zmeskal, Sergio Bartalucci, Laura Sperandio, D. Pietreanu, Alessandro Scordo, K. Piscicchia, S. Bertolucci, A. Pichler, Catalina Curceanu, R. Del Grande, A. Amirkhani, Johann Marton, Piscicchia, K., Pichler, A., Amirkhani, A., Bartalucci, S., Bertolucci, S., Bazzi, M., Bragadireanu, M., Cargnelli, M., Clozza, A., Del Grande, R., De Paolis, L., Egger, J., Fiorini, C., Guaraldo, C., Iliescu, M., Laubenstein, M., Marton, J., Miliucci, M., Milotti, E., Pietreanu, D., Scordo, A., Shi, H., Sirghi, D. L., Sirghi, F., Sperandio, L., Vazquez Doce, O., Zmeskal, J., and Curceanu, C.
- Subjects
Physics ,COSMIC cancer database ,010308 nuclear & particles physics ,quantum mechanics ,General Physics and Astronomy ,experimental tests ,quantum mechanic ,X-ray detectors ,01 natural sciences ,Silence ,symbols.namesake ,Theoretical physics ,Pauli exclusion principle ,experimental test ,0103 physical sciences ,symbols - Abstract
The VIP Collaboration is performing high precision tests of the Pauli Exclusion Principle for electrons in the extremely low cosmic background environment of the Underground Gran Sasso Laboratories of INFN (Italy). The experimental technique consists in introducing a DC current in a copper conductor, searching for Kα PEP-forbidden atomic transitions when the K shell is already occupied by two electrons. VIP set an upper limit on the PEP-violation probability (½) x β^2 < 4.7 × 10^−29. The aim of the upgraded VIP-2 experiment is to improve this result at least by two orders of magnitude. The improved experimental setup and the results of a preliminary data analysis, corresponding to the the first run of the VIP-2 data taking (2016–2017), will be presented.
- Published
- 2020
- Full Text
- View/download PDF
11. VIP-2 - Testing spin-statistics for electrons with high sensitivity
- Author
-
D. Pietreanu, S. Bertolucci, Michael Cargnelli, Florin Sirghi, J.-P. Egger, O. Vazquez-Doce, Matthias Laubenstein, A. Pichler, Johann Zmeskal, Johann Marton, Diana Sirghi, A. Amirkahani, Sergio Bartalucci, M. Bazzi, Hexi Shi, K. Piscicchia, Edoardo Milotti, Alberto Clozza, C. Guaraldo, L. De Paolis, M. Iliescu, Laura Sperandio, Alessandro Scordo, Catalina Curceanu, Mario Bragadireanu, Marton, J., Amirkahani, A., Bartalucci, S., Bazzi, M., Bertolucci, S., Bragadireanu, M., Cargnelli, M., Clozza, A., Curceanu, C., De Paolis, L., Egger, J. -P., Guaraldo, C., Iliescu, M., Laubenstein, M., Milotti, E., Pichler, A., Pietreanu, D., Piscicchia, K., Scordo, A., Shi, H., Sirghi, D., Sirghi, F., Sperandio, L., Vazquez-Doce, O., and Zmeskal, J.
- Subjects
Paper ,Physics ,History ,Pauli principle ,quantum mechanics ,experimental test ,quantum mechanic ,Electron ,01 natural sciences ,ddc ,010305 fluids & plasmas ,Computer Science Applications ,Education ,0103 physical sciences ,Sensitivity (control systems) ,Atomic physics ,010306 general physics ,Spin-½ - Abstract
The VIP-2 (VIolation of the Pauli Exclusion Principle) experiment conducted at the Gran Sasso underground laboratory (LNGS) of INFN is searching for possible tiny violations of standard quantum mechanics in copper atoms with extremely high sensitivity. We investigate atomic transitions with precision X-ray spectroscopy in order to test the Pauli Exclusion Principle (PEP) and therefore the spin-statistics theorem. We present the experimental method for the search for "anomalous" (i.e. Pauli-forbidden) X-ray transitions in copper atoms, produced by "new" electrons, which could have a tiny probability to undergo a Pauli-forbidden transition to the 1s ground state already occupied by two electrons. We describe the VIP-2 experimental setup and its recent optimisations. Presently VIP-2 is taking data at LNGS. The goal of VIP-2 is to test PEP for electrons with unprecedented accuracy, down to a limit in the probability that PEP is violated at the level of 10-31 (and using a more elaborate analysis even 10-40). We present current experimental results.
- Published
- 2020
- Full Text
- View/download PDF
12. VIP2 in LNGS - Testing the Pauli Exclusion Principle for electrons with high sensitivity
- Author
-
Johann Zmeskal, C. Guaraldo, Matthias Laubenstein, Sergio Bartalucci, Johann Marton, Kristian Piscicchia, A. Pichler, Hexi Shi, A. Amirkhani, M. Milucci, Carlo Fiorini, M. Iliescu, J.-P. Egger, M. Bragadireanu, Alberto Clozza, Michael Cargnelli, Massimiliano Bazzi, L. De Paolis, O. Vazquez-Doce, D. L. Sirghi, Dorel Pietreanu, Sergio Bertolucci, Alessandro Scordo, R. Del Grande, Edoardo Milotti, Laura Sperandio, Catalina Curceanu, Florin Sirghi, Marton, J., Pichler, A., Amirkhani, A., Bartalucci, S., Bazzi, M., Bertolucci, S., Bragadireanu, M., Cargnelli, M., Clozza, A., Curceanu, C., Del Grande, R., De Paolis, L., Egger, J. -P., Fiorini, C., Guaraldo, C., Iliescu, M., Laubenstein, M., Milotti, E., Milucci, M., Pietreanu, D., Piscicchia, K., Scordo, A., Shi, H., Sirghi, D., Sirghi, F., Sperandio, L., Vazquez-Doce, O., and Zmeskal, J.
- Subjects
Paper ,History ,Particle physics ,Physics - Instrumentation and Detectors ,FOS: Physical sciences ,quantum mechanic ,Electron ,01 natural sciences ,spin-statistics ,Education ,X-ray ,symbols.namesake ,Pauli exclusion principle ,0103 physical sciences ,X-rays ,Sensitivity (control systems) ,Limit (mathematics) ,010306 general physics ,Spectroscopy ,fundamental symmetrie ,Physics ,Quantum Physics ,010308 nuclear & particles physics ,quantum mechanics ,Instrumentation and Detectors (physics.ins-det) ,Computer Science Applications ,ddc ,atomic transitions ,fundamental symmetries ,Underground laboratory ,symbols ,atomic transition ,High Energy Physics::Experiment ,Quantum Physics (quant-ph) ,Ground state - Abstract
The VIP2 (VIolation of the Pauli Exclusion Principle) experiment at the Gran Sasso underground laboratory (LNGS) is searching for possible violations of standard quantum mechanics predictions in atoms at very high sensitivity. We investigate atomic transitions with precision X-ray spectroscopy in order to test the Pauli Exclusion Principle (PEP) and therefore the related spin-statistics theorem. We will present our experimental method for the search for "anomalous" (i.e. Pauli-forbidden) X-ray transitions in copper atoms, produced by "new" electrons, which could have tiny probability to undergo Pauli-forbidden transition to the ground state already occupied by two electrons. We will describe the VIP2 experimental setup, which is taking data at LNGS presently. The goal of VIP2 is to test the PEP for electrons with unprecedented accuracy, down to a limit in the probability that PEP is violated at the level of 10$^{-31}$. We will present current experimental results and discuss implications of a possible violation., Comment: Proceedings of DICE 2018 Conference
- Published
- 2019
13. Underground Test of Quantum Mechanics: The VIP2 Experiment
- Author
-
Sergio Bartalucci, J.-P. Egger, Mario Bragadireanu, L. De Paolis, Matthias Laubenstein, Angelo Bassi, Florin Sirghi, Alessandro Scordo, Hexi Shi, Edoardo Milotti, Johann Marton, A. Pichler, M. Bazzi, Alberto Clozza, C. Guaraldo, Laura Sperandio, Sandro Donadi, Sergio Bertolucci, E. Widmann, Carolina Berucci, Diana Sirghi, K. Piscicchia, Catalina Curceanu, J. Zmeskal, S. Di Matteo, M. Iliescu, D. Pietreanu, Michael Cargnelli, O. Vazquez-Doce, Andrei Khrennikov, Bourama Toni, Marton, Johann, Bartalucci, S., Bassi, A., Bazzi, M., Bertolucci, S., Berucci, C., Bragadireanu, M., Cargnelli, M., Clozza, A., Curceanu, C., De Paolis, L., Di Matteo, S., Donadi, S., Egger, J. -P., Guaraldo, C., Iliescu, M., Laubenstein, M., Milotti, E., Pichler, A., Pietreanu, D., Piscicchia, K., Scordo, A., Shi, H., Sirghi, D., Sirghi, F., Sperandio, L., Vazquez-Doce, O., Widmann, E., and Zmeskal, J.
- Subjects
Physics - Instrumentation and Detectors ,Pauli Exclusion Principle ,Quantum Mechanics ,Symmetries in Physics ,FOS: Physical sciences ,Electron ,01 natural sciences ,symbols.namesake ,Pauli exclusion principle ,quant-ph ,Quantum mechanics ,0103 physical sciences ,Atom ,Circulating current ,Detectors and Experimental Techniques ,010306 general physics ,physics.ins-det ,General Theoretical Physics ,Physics ,Quantum Physics ,010308 nuclear & particles physics ,Instrumentation and Detectors (physics.ins-det) ,Quantum Mechanic ,Underground laboratory ,symbols ,Quantum Physics (quant-ph) ,Wave function collapse - Abstract
We are experimentally investigating possible violations of standard quantum mechanics predictions in the Gran Sasso underground laboratory in Italy. We test with high precision the Pauli exclusion principle and the collapse of the wave function (collapse models). We present our method of searching for possible small violations of the Pauli exclusion principle (PEP) for electrons, through the search for anomalous X-ray transitions in copper atoms, produced by fresh electrons (brought inside the copper bar by circulating current) which could have a non-zero probability to undergo Pauli-forbidden transition to the 1s level already occupied by two electrons, and we describe the VIP2 (Violation of PEP) experiment under data taking at the Gran Sasso underground laboratories. In this paper the new VIP2 setup installed in the Gran Sasso underground laboratory will be presented. The goal of VIP2 is to test the PEP for electrons with unprecedented accuracy, down to a limit in the probability that PEP is violated at the level of 10−31. We show preliminary experimental results and discuss implications of a possible violation.
- Published
- 2018
14. VIP2 at Gran Sasso - Test of the validity of the spin statistics theorem for electrons with X-ray spectroscopy
- Author
-
C. Berucci, Dorel Pietreanu, Johann Zmeskal, Matthias Laubenstein, Massimiliano Bazzi, Sergio Bartalucci, M. Bragadireanu, Eberhard Widmann, Catalina Curceanu, D. L. Sirghi, Hexi Shi, L. De Paolis, M. Iliescu, Alessandro Scordo, J.-P. Egger, Sergio Bertolucci, Florin Sirghi, S. Di Matteo, Michael Cargnelli, O. Vazquez-Doce, Kristian Piscicchia, Alberto Clozza, C. Guaraldo, Edoardo Milotti, Laura Sperandio, Johann Marton, A. Pichler, Stefan Meyer Institut für subatomare Physik (SMI), Laboratori Nazionali di Frascati (LNF), Istituto Nazionale di Fisica Nucleare (INFN), Institut de Physique de Rennes (IPR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Université de Neuchâtel (UNINE), Laboratori Nazionali del Gran Sasso (LNGS), Università degli studi di Trieste, Horia Hulubei National Institute for Physics and Nuclear Engineering, Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), Foundational Questions Institute, FQXiAustrian Science Fund, FWF: P25529-N20, W1252-N27John Templeton Foundation, JTF: 58158CA 15220, Clark K.Jillings C.Kraus C.Saffin J.Scorza S., Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), Università degli studi di Trieste = University of Trieste, Marton, J., Pichler, A., Bartalucci, S., Bazzi, M., Bertolucci, S., Berucci, C., Bragadireanu, M., Cargnelli, M., Clozza, A., Curceanu, C., Paolis, L. D., Matteo, S. D., Egger, J. -P., Guaraldo, C., Iliescu, M., Laubenstein, M., Milotti, E., Pietreanu, D., Piscicchia, K., Scordo, A., Shi, H., Sirghi, D., Sirghi, F., Sperandio, L., Vazquez-Doce, O., Widmann, E., and Zmeskal, J.
- Subjects
electron ,History ,Physics - Instrumentation and Detectors ,experimental methods ,Underground laboratory ,X-ray: irradiation ,High-precision ,Electron ,01 natural sciences ,wave function: collapse ,Limit (mathematics) ,Wave function ,Wave functions ,Physics ,[PHYS]Physics [physics] ,Quantum Physics ,symmetry: violation ,quantum mechanics ,Spin–statistics theorem ,Instrumentation and Detectors (physics.ins-det) ,Pauli principle ,Computer Science Applications ,symbols ,Ground state ,Particle physics ,spin: statistics ,FOS: Physical sciences ,Electrons ,Education ,Pauli exclusion principle ,symbols.namesake ,0103 physical sciences ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Pauli ,010306 general physics ,X-ray spectroscopy ,Forbidden transitions ,quantum physics ,experimental tests ,010308 nuclear & particles physics ,X ray spectroscopy ,Spin statistics theorems ,deep underground detector ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,quantum physic ,Gran Sasso ,copper: target ,X ray transitions ,High Energy Physics::Experiment ,Wave function collapse ,Circulating current ,Quantum Physics (quant-ph) ,Copper - Abstract
In the VIP2 (VIolation of the Pauli Exlusion Principle) experiment at the Gran Sasso underground laboratory (LNGS) we are searching for possible violations of standard quantum mechanics predictions. With high precision we investigate the Pauli Exclusion Principle and the collapse of the wave function (collapse models). We will present our experimental method of searching for possible small violations of the Pauli Exclusion Principle for electrons, via the search for "anomalous" X-ray transitions in copper atoms, produced by "new" electrons (brought inside a copper bar by circulating current) which could have the probability to undergo Pauli-forbidden transition to the ground state (1 s level) already occupied by two electrons. We will describe the concept of the VIP2 experiment taking data at LNGS presently. The goal of VIP2 is to test the PEP for electrons with unprecedented accuracy, down to a limit in the probability that PEP is violated at the level of 10$^{-31}$. We will show preliminary experimental results obtained at LNGS and discuss implications of a possible violation., Comment: Proceedings TAUP 2017
- Published
- 2017
15. Quantum mechanics under X-rays in the Gran Sasso underground laboratory
- Author
-
Matthias Laubenstein, Johann Marton, A. Pichler, Edoardo Milotti, Jean Pierre Egger, Diana Sirghi, Mario Bragadireanu, Laura Sperandio, Marco Miliucci, Angelo Bassi, Sergio Bartalucci, Johann Zmeskal, C. Guaraldo, Sandro Donadi, Oton Vazquez Doce, Michael Cargnelli, Florin Sirghi, Sergio Di Matteo, Hexi Shi, Catalina Curceanu, M. Iliescu, Alessandro Scordo, Massimiliano Bazzi, Luca De Paolis, Alberto Clozza, Kristian Piscicchia, Sergio Bertolucci, Dorel Pietreanu, Institut de Physique de Rennes (IPR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Curceanu, C., Sirghi, D., Sirghi, F., Bartalucci, S., Bazzi, M., Clozza, A., De Paolis, L., Guaraldo, C., Iliescu, M., Miliucci, M., Pietreanu, D., Scordo, A., Shi, H., Sperandio, L., Bassi, A., Donadi, S., Milotti, E., Bertolucci, S., Bragadireanu, M., Cargnelli, M., Marton, J., Pichler, A., Zmeskal, J., Di Matteo, S., Egger, J. P., Laubenstein, M., Piscicchia, K., Doce, O. V., and Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
electron ,radiation detector ,Physics and Astronomy (miscellaneous) ,Measurement problem ,collapse models ,Electron ,Parameter space ,01 natural sciences ,Bayesian ,Particle detector ,localization ,symbols.namesake ,Pauli exclusion principle ,radiation detectors ,Quantum mechanics ,0103 physical sciences ,X-rays ,model: collapse ,X-ray: emission ,collapse model ,Pauli ,010306 general physics ,Physics ,Spin-statistics ,COSMIC cancer database ,010308 nuclear & particles physics ,Spin-statistic ,quantum mechanics ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,Gran Sasso ,Underground laboratory ,symbols ,measurement theory ,Order of magnitude - Abstract
International audience; By performing X-ray measurements in the “cosmic silence” of the underground laboratory of Gran Sasso, LNGS-INFN, we test a basic principle of quantum mechanics: the Pauli Exclusion Principle (PEP) for electrons. We present the achieved results of the VIP experiment and the ongoing VIP2 measurement aiming to gain two orders of magnitude improvement in testing PEP. X-ray emission can also be used to put strong constraints on the parameters of the Continuous Spontaneous Localization Model, which was introduced as a possible solution to the measurement problem in Quantum Mechanics. A Bayesian analysis of the data collected by IGEX will be presented, which allows to exclude a broad region of the parameter space which characterizes this model.
- Published
- 2017
16. The Effect of Spontaneous Collapses on Neutrino Oscillations
- Author
-
Angelo Bassi, Sandro Donadi, Luca Ferialdi, Catalina Curceanu, Donadi, Sandro, Bassi, Angelo, Curceanu, C., and Ferialdi, L.
- Subjects
Physics ,Quantum Physics ,Particle physics ,neutrino oscillations ,quantum mechanics ,High Energy Physics::Phenomenology ,FOS: Physical sciences ,General Physics and Astronomy ,Collapse (topology) ,collapse models ,Function (mathematics) ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,neutrino oscillation ,High Energy Physics::Experiment ,Perturbation theory (quantum mechanics) ,collapse model ,Neutrino ,Quantum Physics (quant-ph) ,Neutrino oscillation - Abstract
We compute the effect of collapse models on neutrino oscillations. The effect of the collapse is to modify the evolution of the `spatial' part of the wave function, which indirectly amounts to a change on the flavor components. In many respects, this phenomenon is similar to neutrino propagation through matter. For the analysis we use the mass proportional CSL model, and perform the calculation to second order perturbation theory. As we will show, the CSL prediction is very small - mainly due to the very small mass of neutrinos - and practically undetectable., Comment: 24 pages, RevTeX. Updated version
- Published
- 2013
17. Experimental tests of quantum mechanics: Pauli Exclusion Principle Violation (the VIP experiment) and future perspectives
- Author
-
Michael Cargnelli, J.-P. Egger, C. Guaraldo, C. Petrascu, M. Iliescu, Matthias Laubenstein, O. Vazquez Doce, D. Pietreanu, Sergio Bertolucci, A. Rizzo, Johann Marton, Diana Sirghi, A. Romero Vidal, Johann Zmeskal, Sergio Bartalucci, T. Ishiwatari, S. Di Matteo, T. Ponta, Alessandro Scordo, Mario Bragadireanu, Edoardo Milotti, Laura Sperandio, E. Widmann, Florin Sirghi, AA. VV., Curceanu, C., Bartalucci, S., Bertolucci, S., Bragadireanu, M., Cargnelli, M., Di Matteo, S., Egger, J. P., Guaraldo, C., Iliescu, M., Ishiwatari, T., Laubenstein, M., Marton, J., Milotti, Edoardo, Pietreanu, D., Ponta, T., Rizzo, A., Romero Vidal, A., Scordo, A., Sirghi, D. L., Sirghi, F., Sperandio, L., Vazquez Doce, O., Widmann, E., Zmeskal, J., Klaus Kirch, Bernhard Lauss and Stefan Ritt, and di Matteo, S.
- Subjects
History ,X-ray detection ,Electron ,Physics and Astronomy(all) ,01 natural sciences ,Education ,Theoretical physics ,symbols.namesake ,Pauli exclusion principle ,parastatistics ,Quantum mechanics ,Pauli Exclusion Principle violations ,quantum mechanics ,0103 physical sciences ,Limit (mathematics) ,Pauli Exclusion Principle violation ,Quantum field theory ,010306 general physics ,Physics ,Future perspective ,Basis (linear algebra) ,Spin-statistic ,010308 nuclear & particles physics ,Violation of the Pauli Exclusion Principle ,Modern physics ,16. Peace & justice ,Computer Science Applications ,Spin-statistics ,symbols ,parastatistic ,High Energy Physics::Experiment - Abstract
The Pauli exclusion principle (PEP), consequence of the spin-statistics connection, is one of the basic principles of the modern physics. Being at the very basis of our understanding of matter, as many other fundamental principles it spurs a lively debate on its possible limits, deeply rooted in the very foundations of Quantum Field Theory. Therefore, it is extremely important to test the limits of its validity. Quon theory provides a suitable mathematical framework of possible violation of PEP, where the violation parameter q translates into a probability of violating PEP. The VIP (VIolation of the Pauli exclusion principle) experiment established a new limit on the probability that PEP is violated by electrons, using the method of searching for PEP forbidden atomic transitions in copper. We describe the experimental method, the obtained results, both in terms of the q-parameter from quon theory and as probability of PEP violation, we briefly discuss them and present future plans to go beyond the actual limit by upgrading the experimental setup. We also shortly mention the possibility of using a similar experimental technique to search for eventual X-rays, generated in the spontaneous collapse models in quantum mechanics.
- Published
- 2011
18. VIP 2: experimental tests of the pauli exclusion principle for electrons
- Author
-
Florin Sirghi, M. Iliescu, Diana Sirghi, C. Guaraldo, Johann Marton, J.-P. Egger, Hexi Shi, Mario Bragadireanu, S. Di Matteo, Matthias Laubenstein, Catalina Curceanu, K. Piscicchia, L. De Paolis, Michael Cargnelli, T. Ishiwatari, A. d'Uffizi, Alberto Clozza, O. Vazquez-Doce, E. Widmann, Carolina Berucci, Sergio Bertolucci, E. Sbardella, Johann Zmeskal, Sergio Bartalucci, D. Pietreanu, Edoardo Milotti, Laura Sperandio, T. Ponta, A. Pichler, Alessandro Scordo, Stefan Meyer Institut für subatomare Physik (SMI), Laboratori Nazionali di Frascati (LNF), Istituto Nazionale di Fisica Nucleare (INFN), CERN [Genève], Enrico Fermi Center for Study and Research | Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, National Institut for Nuclear Physics and Engineering (IFIN HH), National Institut for Nuclear Physics and Engineering, Institut de Physique de Rennes (IPR), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), Université de Neuchâtel (UNINE), Laboratori Nazionali del Gran Sasso (LNGS), Università degli studi di Trieste = University of Trieste, Museo Storico della Fisica e Centro di Studi e Ricerche 'Enrico Fermi', Roma, Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Dipartimento di Fisica, Università di Trieste, Università degli studi di Trieste, Pichler, A, Bartalucci, S., Bertolucci, S., Berucci, C., Bragadireanu, M., Cargnelli, M., Clozza, A., Curceanu, C., Paolis, L. De, Matteo, S. Di, D’Uffizi, A., Egger, J. P., Guaraldo, C., Iliescu, M., Ishiwatari, T., Laubenstein, M., Marton, J., Milotti, Edoardo, Pietreanu, D., Piscicchia, K., Ponta, T., Sbardella, E., Scordo, A., Shi, H., Sirghi, D., Sirghi, F., Sperandio, L., Vazquez Doce, O., Widmann, E., Zmeskal, J., Pichler, A., Egger, J.-P., Milotti, E., and Vazquez-Doce, O.
- Subjects
Particle physics ,Nuclear and High Energy Physics ,Atomic and Molecular Physics, and Optic ,Physics - Instrumentation and Detectors ,Pauli exclusion principle ,Quantum mechanics ,X-ray measurements ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Physical and Theoretical Chemistry ,Hadron ,FOS: Physical sciences ,Electron ,Condensed Matter Physic ,Hadrons ,01 natural sciences ,Atomic ,03.65.-w ,symbols.namesake ,Optical and Plasma Physics ,Atomic and Molecular Physics ,0103 physical sciences ,Heavy Ions ,Limit (mathematics) ,Detectors and Experimental Techniques ,010306 general physics ,ComputingMilieux_MISCELLANEOUS ,Nuclear and High Energy Physic ,Nuclear Physics ,Physics ,Thin Films ,[PHYS]Physics [physics] ,Quantum Physics ,X-ray measurement ,010308 nuclear & particles physics ,Molecular ,Instrumentation and Detectors (physics.ins-det) ,Surfaces and Interfaces ,32.30.Rj ,Quantum mechanic ,07.85.Fv ,symbols ,and Optics ,Quantum Physics (quant-ph) ,Order of magnitude - Abstract
Many experiments investigated the violation of the Pauli Exclusion Principle (PEP) since its discovery in 1925. The VIP (VIolation of the Pauli Principle) experiment tested the PEP by measuring the probability for an external electron to be captured and undergo a 2p to 1s transition during its cascading process, where the 1s state is already occupied by two electrons. This transition is forbidden by the Pauli Exclusion Principle. The VIP experiment resulted in a preliminary upper limit for the probability of the violation of the PEP of 4.7 x 10^{-29}. Currently a setup for the follow-up experiment VIP 2 is under preparation. The goal of this experiment is to improve the upper limit for the violation of the PEP by two orders of magnitude, by different improvements like enhanced energy resolution of the X-ray detectors and by implementing an active shielding. Here we report currently ongoing performance tests of the new parts of the setup., EXA 2014 proceedings in Hyperfine Interactions (2015), Springer International Publishing
- Published
- 2015
19. High sensitivity tests of the Pauli Exclusion Principle with VIP2
- Author
-
A. Pichler, M. Iliescu, T. Ponta, M. Bragadireanu, Alberto Clozza, Johann Zmeskal, Michael Cargnelli, Matthias Laubenstein, S. Di Matteo, Florin Sirghi, J. P. Egger, T. Ishiwatari, Kristian Piscicchia, O. Vazquez Doce, D. L. Sirghi, Catalina Curceanu, C. Guaraldo, Sergio Bartalucci, Hexi Shi, Eberhard Widmann, Edoardo Milotti, Laura Sperandio, Alessandro Scordo, Sergio Bertolucci, C. Berucci, Dorel Pietreanu, Johann Marton, Marton, J., Bartalucci, S., Bertolucci, S., Berucci, C., Bragadireanu, M., Cargnelli, M., Curceanu, C., Clozza, A., Matteo, S. Di, Egger, J. P., Guaraldo, C., Iliescu, M., Ishiwatari, T., Laubenstein, M., Milotti, Edoardo, Pichler, A., Pietreanu, D., Piscicchia, K., Ponta, T., Scordo, A., Shi, H., Sirghi, D. L., Sirghi, F., Sperandio, L., Doce, O. Vazquez, Widmann, E., and Zmeskal, J.
- Subjects
experimental tests of fundamental principles ,History ,Physics - Instrumentation and Detectors ,FOS: Physical sciences ,Quantum mechanics ,symmetrisation principle ,Education ,Orders of magnitude (entropy) ,symbols.namesake ,Theoretical physics ,Pauli exclusion principle ,Atom ,Limit (mathematics) ,Sensitivity (control systems) ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment ,General Theoretical Physics ,Physics ,Quantum Physics ,Pillar ,Instrumentation and Detectors (physics.ins-det) ,Quantum mechanic ,Computer Science Applications ,symbols ,Underground laboratory ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Experimental methods ,Quantum Physics (quant-ph) - Abstract
The Pauli Exclusion Principle is one of the most fundamental rules of nature and represents a pillar of modern physics. According to many observations the Pauli Exclusion Principle must be extremely well fulfilled. Nevertheless, numerous experimental investigations were performed to search for a small violation of this principle. The VIP experiment at the Gran Sasso underground laboratory searched for Pauli-forbidden X-ray transitions in copper atoms using the Ramberg-Snow method and obtained the best limit so far. The follow-up experiment VIP2 is designed to reach even higher sensitivity. It aims to improve the limit by VIP by orders of magnitude. The experimental method, comparison of different PEP tests based on different assumptions and the developments for VIP2 are presented., Comment: 6 pages, 3 figures, Proceedings DISCRETE2014 Conference
- Published
- 2015
- Full Text
- View/download PDF
20. Testing the Pauli Exclusion Principle for Electrons at LNGS
- Author
-
A. Romero Vidal, L. De Paolis, S. Di Matteo, Matthias Laubenstein, Carolina Berucci, M. Iliescu, Edoardo Milotti, Florin Sirghi, Hexi Shi, E. Sbardella, Laura Sperandio, Alessandro Scordo, Johann Zmeskal, T. Ishiwatari, Alberto Clozza, Michael Cargnelli, C. Guaraldo, Sergio Bertolucci, J.-P. Egger, O. Vazquez Doce, K. Piscicchia, D. L. Sirghi, Sergio Bartalucci, Dorel Pietreanu, A. M. Bragadireanu, Catalina Curceanu, T. Ponta, Eberhard Widmann, A. d'Uffizi, Johann Marton, Shi, H., Bartalucci, S., Bertolucci, S., Berucci, C., Bragadireanu, A. M., Cargnelli, M., Clozza, A., Curceanu, C., De Paolis, L., Di Matteo, S., D’Uffizi, A., Egger, J. P., Guaraldo, C., Iliescu, M., Ishiwatari, T., Marton, J., Laubenstein, M., Milotti, Edoardo, Pietreanu, D., Piscicchia, K., Ponta, T., Vidal, A. Romero, Sbardella, E., Scordo, A., Sirghi, D. L., Sirghi, F., Sperandio, L., Doce, O. Vazquez, Widmann, E., Zmeskal, J., Stefan Meyer Institut für subatomare Physik (SMI), Laboratori Nazionali di Frascati (LNF), Istituto Nazionale di Fisica Nucleare (INFN), CERN [Genève], National Institut for Nuclear Physics and Engineering (IFIN HH), National Institut for Nuclear Physics and Engineering, Enrico Fermi Center for Study and Research | Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Institut de Physique de Rennes (IPR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique, Université de Neuchâtel, Université de Neuchâtel (UNINE), Laboratori Nazionali del Gran Sasso (LNGS), Dipartimento di Fisica, Università di Trieste, Università degli studi di Trieste, Universidade de Santiago de Compostela [Spain] (USC ), Excellence Cluster Universe, Technische Universität Munchen - Université Technique de Munich [Munich, Allemagne] (TUM), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), Università degli studi di Trieste = University of Trieste, Museo Storico della Fisica e Centro di Studi e Ricerche 'Enrico Fermi', and Roma
- Subjects
Physics - Instrumentation and Detectors ,Pauli Exclusion Principle (PEP) ,FOS: Physical sciences ,Electron ,Physics and Astronomy(all) ,01 natural sciences ,Quantum mechanics ,Nuclear physics ,symbols.namesake ,Pauli exclusion principle ,0103 physical sciences ,Atom ,INFN-LNGS ,Limit (mathematics) ,010306 general physics ,General Theoretical Physics ,ComputingMilieux_MISCELLANEOUS ,[PHYS]Physics [physics] ,Physics ,Quantum Physics ,Series (mathematics) ,010308 nuclear & particles physics ,Instrumentation and Detectors (physics.ins-det) ,State (functional analysis) ,Quantum mechanic ,symbols ,Electric current ,Quantum Physics (quant-ph) ,Order of magnitude - Abstract
High-precision experiments have been done to test the Pauli exclusion principle (PEP) for electrons by searching for anomalous $K$-series X-rays from a Cu target supplied with electric current. With the highest sensitivity, the VIP (VIolation of Pauli Exclusion Principle) experiment set an upper limit at the level of $10^{-29}$ for the probability that an external electron captured by a Cu atom can make the transition from the 2$p$ state to a 1$s$ state already occupied by two electrons. In a follow-up experiment at Gran Sasso, we aim to increase the sensitivity by two orders of magnitude. We show proofs that the proposed improvement factor is realistic based on the results from recent performance tests of the detectors we did at Laboratori Nazionali di Frascati (LNF)., Comment: 8 pages, 5 figures, conference proceedings on TAUP 2013
- Published
- 2015
21. X rays on quantum mechanics: Pauli Exclusion Principle and collapse models at test
- Author
-
Michael Cargnelli, C. Guaraldo, Carolina Berucci, Sandro Donadi, A. Pichler, Sergio Bertolucci, M. Iliescu, K. Piscicchia, Catalina Curceanu, A. d'Uffizi, D. Pietreanu, Matthias Laubenstein, J.-P. Egger, Alberto Clozza, Johann Marton, Angelo Bassi, L. De Paolis, T. Ponta, Alessandro Scordo, A. M. Bragadireanu, O. Vazquez Doce, Florin Sirghi, S. Di Matteo, Edoardo Milotti, Laura Sperandio, Diana Sirghi, E. Sbardella, Johann Zmeskal, Hexi Shi, Sergio Bartalucci, Curceanu, C., Bartalucci, S., Bassi, Angelo, Bertolucci, S., Berucci, C., Bragadireanu, A. M., Cargnelli, M., Clozza, A., De Paolis, L., Matteo, S. Di, Donadi, Sandro, D'Uffizi, A., Egger, J. P., Guaraldo, C., Iliescu, M., Laubenstein, M., Marton, J., Milotti, Edoardo, Pichler, A., Pietreanu, D., Piscicchia, K., Ponta, T., Sbardella, E., Scordo, A., Shi, H., Sirghi, D. L., Sirghi, F., Sperandio, L., Doce, O. Vazquez, and Zmeskal, J.
- Subjects
Physics ,History ,Spectrum (functional analysis) ,Collapse (topology) ,Measurement problem ,Dynamical reduction models ,01 natural sciences ,010305 fluids & plasmas ,Computer Science Applications ,Education ,Set (abstract data type) ,symbols.namesake ,Theoretical physics ,Pauli exclusion principle ,Development (topology) ,Quantum mechanics ,0103 physical sciences ,symbols ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,Foundations of quantum mechanic ,Foundations of quantum mechanics ,Limit (mathematics) ,010306 general physics ,Reduction (mathematics) - Abstract
In the last decades huge theoretical effort was devoted to the development of consistent theoretical models, aiming to solve the so-called "measurement problem". Among these, the Dynamical Reduction Models possess the unique characteristic to be experimentally testable, thus enabling to set experimental upper bounds on the reduction rate parameter λ characterizing these models. By analysing the X-ray spectrum emitted by an isolated slab of Germanium, we set the most stringent limit on the λ parameter up to date.
- Published
- 2015
22. Beyond Quantum Mechanics? Hunting the 'Impossible' Atoms --- Pauli Exclusion Principle Violation and Spontaneous Collapse of the Wave Function at Test
- Author
-
Edoardo Milotti, O. Vazquez Doce, Laura Sperandio, T. Ishiwatari, Kristian Piscicchia, Sandro Donadi, Alberto Clozza, Matthias Laubenstein, Alessandro Scordo, A. d'Uffizi, J. Marton, Angelo Bassi, A. M. Bragadireanu, C. Berucci, E. Sbardella, D. Pietreanu, L. De Paolis, Johann Zmeskal, D. L. Sirghi, M. Cargnelli, C. Guaraldo, J. P. Egger, Catalina Curceanu, T. Ponta, S. Di Matteo, Sergio Bertolucci, Hexi Shi, M. Iliescu, Sergio Bartalucci, Florin Sirghi, Piscicchia, K., Curceanu, C., Bartalucci, S., Bassi, A., Bertolucci, S., Berucci, C., Bragadireanu, A. M., Cargnelli, M., Clozza, A., De Paolis, L., Di Matteo, S., Donadi, S., D'Uffizi, A., Egger, J. -P., Guaraldo, C., Iliescu, M., Ishiwatari, T., Laubenstein, M., Marton, J., Milotti, E., Pietreanu, D., Ponta, T., Sbardella, E., Scordo, A., Shi, H., Sirghi, D. L., Sirghi, F., Sperandio, L., Doce, O. V., and Zmeskal, J.
- Subjects
Physics ,Photon ,Physics - Instrumentation and Detectors ,General Physics and Astronomy ,FOS: Physical sciences ,experimental tests ,Electron ,Expectation value ,Instrumentation and Detectors (physics.ins-det) ,Spin-statistics connection ,quantum physics ,quantum physic ,Schrödinger equation ,ddc ,symbols.namesake ,Pauli exclusion principle ,Quantum mechanics ,symbols ,High Energy Physics::Experiment ,Nucleon ,Wave function collapse ,Hamiltonian (quantum mechanics) ,Quantum Physics (quant-ph) ,General Theoretical Physics - Abstract
1 ar X iv :1 50 1. 04 46 2v 1 [ qu an tph ] 1 9 Ja n 20 15 The development of mathematically complete and consistent models solving the so-called ”measurement problem”, strongly renewed the interest of the scientific community for the foundations of quantum mechanics, among these the Dynamical Reduction Models posses the unique characteristic to be experimentally testable. In the first part of the paper an upper limit on the reduction rate parameter of such models will be obtained, based on the analysis of the X-ray spectrum emitted by an isolated slab of germanium and measured by the IGEX experiment. The second part of the paper is devoted to present the results of the VIP (Violation of the Pauli exclusion principle) experiment and to describe its recent upgrade. The VIP experiment established a limit on the probability that the Pauli Exclusion Principle (PEP) is violated by electrons, using the very clean method of searching for PEP forbidden atomic transitions in copper. 1 Upper limit on the wave function collapse mean rate parameter λ The first consistent and satisfying Dynamical Reduction Model, known as Quantum Mechanics with Spontaneous Localization (QMSL) [1], considers particles undergoing spontaneous localizations around definite positions, following a Possion distribution characterized by a mean frequency λ = 10−16 s−1. This brought to the development of the CSL theory [2] based on the introduction of new, non linear and stochastic terms, in the Shrodinger equation besides to the standard Hamiltonian. Such terms induce, for the state vector, a diffusion process, which is responsible for the wave packet reduction. As demonstrated by Q. Fu [3] the particle interaction with the stochastic field also causes an enhancement of the energy expectation value. This implies, for a charged particle, the emission of electromagnetic radiation (known as spontaneous radiation) not present in the standard quantum mechanics. The radiation spectrum spontaneously emitted by a free electron was calculated by Fu [3] in the framework of the non-relativistic CSL model, and it is given by: dΓ(E) dE = eλ 4π2a2m2E , where m represents the electron mass, E is the energy of the emitted photon, λ and a are respectively the reduction rate parameter and the correlation length of the reduction model which is assumed to be a = 10−7 m. If the stochastic field is assumed to be coupled to the particle mass density (mass proportional CSL model) (see for example [4]) then the previous expression for the emission rate is to be multiplied by the factor (me/mN ) , with mN the nucleon mass. Using the measured radiation appearing in an isolated slab of Germanium [5] corresponding to an energy of 11 KeV, Fu obtained the limit λ ≤ 0.55 · 10−16s−1. In Ref. [6] the author argues that, in evaluating his numerical result, Fu uses for the electron charge the value e = 17137.04, whereas the standard adopted Feynman rules require the identification e/(4π) = 17137.04. We took into account this correction when evaluating the new limit. In order to reduce possible biases introduced on the λ value by the punctual evaluation of the rate at one single energy bin, the X-ray emission spectrum measured by the IGEX experiment [7, 8] was fitted in the range ∆E = 4.5÷ 48.5 KeV m, compatible with the non-relativistic assumption (for electrons) used in the calculation of the predicted rate. A Bayesian model was
- Published
- 2015
23. Underground tests of quantum mechanics. Whispers in the cosmic silence?
- Author
-
Angelo Bassi, Johann Zmeskal, D. Pietreanu, Catalina Curceanu, L. De Paolis, Hexi Shi, A. Pichler, Alessandro Scordo, Kristian Piscicchia, Sandro Donadi, J. Marton, S. Di Matteo, Matthias Laubenstein, C. Guaraldo, D. L. Sirghi, Edoardo Milotti, Massimiliano Bazzi, M. Iliescu, Alberto Clozza, J. P. Egger, Sergio Bartalucci, M. Cargnelli, Laura Sperandio, A. M. Bragadireanu, Sergio Bertolucci, O. Vazquez Doce, C. Berucci, Florin Sirghi, Institut de Physique de Rennes (IPR), Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Centre National de la Recherche Scientifique (CNRS), Curceanu, C., Bartalucci, S., Bassi, Angelo, Bazzi, M., Bertolucci, S., Berucci, C., Bragadireanu, A. M., Cargnelli, M., Clozza, A., De Paolis, L., Di Matteo, S., Donadi, Sandro, Egger, J. P., Guaraldo, C., Iliescu, M., Laubenstein, M., Marton, J., Milotti, Edoardo, Pichler, A., Pietreanu, D., Piscicchia, K., Scordo, A., Shi, H., Sirghi, D., Sirghi, F., Sperandio, L., Vazquez Doce, O., Zmeskal, J., Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique de Rennes ( IPR ), Université de Rennes 1 ( UR1 ), and Université de Rennes ( UNIV-RENNES ) -Université de Rennes ( UNIV-RENNES ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
History ,Physics - Instrumentation and Detectors ,Physics and Astronomy (all) ,Pauli principle ,spin-statistics connection ,spontaneous localization models ,quantum measurement ,FOS: Physical sciences ,Measurement problem ,Electron ,Radiation ,01 natural sciences ,Education ,symbols.namesake ,Pauli exclusion principle ,Quantum mechanics ,0103 physical sciences ,[ PHYS.PHYS.PHYS-GEN-PH ] Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,010306 general physics ,[ PHYS.PHYS.PHYS-INS-DET ] Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Physics ,Quantum Physics ,spontaneous localization model ,COSMIC cancer database ,010308 nuclear & particles physics ,Instrumentation and Detectors (physics.ins-det) ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,Computer Science Applications ,Silence ,Underground laboratory ,symbols ,Quantum Physics (quant-ph) ,Order of magnitude - Abstract
By performing X-rays measurements in the "cosmic silence" of the underground laboratory of Gran Sasso, LNGS-INFN, we test a basic principle of quantum mechanics: the Pauli Exclusion Principle (PEP), for electrons. We present the achieved results of the VIP experiment and the ongoing VIP2 measurement aiming to gain two orders of magnitude improvement in testing PEP. We also use a similar experimental technique to search for radiation (X and gamma) predicted by continuous spontaneous localization models, which aim to solve the "measurement problem"., 7 pages, 3 figures, proceedings to the workshop "Eighth International Workshop DICE2016", Castello Pasquini/Castiglioncello (Tuscany), September 12-16, 2016 Spacetime - Matter - Quantum Mechanics
- Published
- 2017
24. Experimental tests of quantum mechanics: Pauli exclusion principle violation and spontaneous collapse models
- Author
-
J.-P. Egger, Angelo Bassi, Alessandro Scordo, C. Guaraldo, O. Vazquez Doce, Johann Zmeskal, Diana Sirghi, A. Romero Vidal, Sandro Donadi, T. Ishiwatari, Florin Sirghi, Sergio Bartalucci, Edoardo Milotti, S. Di Matteo, E. Widmann, D. Pietreanu, Laura Sperandio, Sergio Bertolucci, Michael Cargnelli, A. Rizzo, Matthias Laubenstein, Catalina Curceanu, M. Iliescu, Alberto Clozza, T. Ponta, Johann Marton, Mario Bragadireanu, AA. VV., Curceanu, C., Bartalucci, S., Bassi, Angelo, Bertolucci, S., Bragadireanu, M., Cargnelli, M., Clozza, A., Di Matteo, S., Donadi, S., Egger, J. P., Guaraldo, C., Iliescu, M., Ishiwatari, T., Laubenstein, M., Marton, J., Milotti, Edoardo, Pietreanu, D., Ponta, T., Rizzo, A., Romero Vidal, A., Scordo, A., Sirghi, D. L., Sirghi, F., Sperandio, L., Vazquez Doce, O., Widmann, E., and Zmeskal, J.
- Subjects
Physics ,Basis (linear algebra) ,Silicon drift detector ,quantum mechanics ,Collapse (topology) ,quantum mechanic ,X-ray detectors ,symmetrization principle ,Electron ,Modern physics ,fundamental symmetries ,symbols.namesake ,Theoretical physics ,Pauli exclusion principle ,Quantum mechanics ,symbols ,High Energy Physics::Experiment ,Limit (mathematics) ,Quantum field theory ,fundamental symmetrie - Abstract
The Pauli exclusion principle (PEP) is one of the basic principles of the modern physics. Being at the very basis of our understanding of matter, it spurs, presently, a lively debate on its possible limits, deeply rooted in the very foundations of Quantum Field Theory. Therefore, it is extremely important to test the limits of its validity. Quon theory provides a suitable mathematical framework of possible violation of PEP, where the violation parameter q translates into a probability of violating PEP. Experimentally, setting a bound on PEP violation means confining the violation parameter to a value very close to either 1 (for bosons) or -1 (for fermions). The VIP (VIolation of the Pauli exclusion principle) experiment established a limit on the probability that PEP is violated by electrons, using the method of searching for PEP forbidden atomic transitions in copper. We describe the experimental method, the obtained results, both in terms of the q-parameter from quon theory and as probability of PEP violation, we briefly discuss them and present future plans to go beyond the actual limit by upgrading the experimental technique using vetoed new spectroscopical fast Silicon Drift Detectors. We also mention the possibility of using a similar experimental technique to search for eventual X-rays, generated in the spontaneous collapse models.
- Published
- 2012
25. A glimpse into the Pandora box of the quantum mechanics: The Pauli exclusion principle violation and spontaneous collapse models put at test
- Author
-
A. Romero Vidal, Angelo Bassi, M. Poli Lener, Edoardo Milotti, E. Widmann, S. Bertolucci, Florin Sirghi, Laura Sperandio, A. Rizzo, J.-P. Egger, Johann Zmeskal, Diana Sirghi, Alberto Clozza, K. Piscicchia, C. Guaraldo, Alessandro Scordo, Mario Bragadireanu, Sergio Bartalucci, Sandro Donadi, Johann Marton, T. Ishiwatari, S. Di Matteo, O. Vazquez Doce, Matthias Laubenstein, M. Iliescu, Catalina Curceanu, Michael Cargnelli, D. Pietreanu, T. Ponta, Andrei Khrennikov, Harald Atmanspacher, Alan Migdall, Sergey Polyakov, Curceanu, C., Bartalucci, S., Bassi, Angelo, Bertolucci, S., Bragadireanu, M., Cargnelli, M., Clozza, A., Di Matteo, S., Donadi, S., Egger, J. P., Guaraldo, C., Iliescu, M., Ishiwatari, T., Laubenstein, M., Marton, J., Milotti, Edoardo, Pietreanu, D., Piscicchia, K., Poli Lener, M., Ponta, T., Rizzo, A., Romero Vidal, A., Scordo, A., Sirghi, D. L., Sirghi, F., Sperandio, L., Vazquez Doce, O., Widmann, E., and Zmeskal, J.
- Subjects
Physics ,Fermion ,Electron ,Quantum Mechanic ,Pauli principle ,Experimental tests ,Symmetrization principle ,Quantum Mechanics ,symbols.namesake ,Pauli exclusion principle ,Quantum mechanics ,symbols ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Field theory (psychology) ,Limit (mathematics) ,Quantum field theory ,Wave function collapse ,Boson - Abstract
The Pauli exclusion principle (PEP) and, more generally, the spin-statistics connection, is at the very basis of our understanding of matter and Nature. The PEP spurs, presently, a lively debate on its possible limits, deeply rooted in the very foundations of Quantum Mechanics and Quantum Field Theory. Therefore, it is extremely important to test the limits of its validity. Quon theory provides a suitable mathematical framework of possible small violation of PEP, where the q violation parameter translates into a probability of violating PEP. Experimentally, setting a bound on PEP violation means confining the q-parameter to a value very close to either 1 (for bosons) or −1 (for fermions). The VIP (VIolation of the Pauli exclusion principle) experiment established a limit on the probability that PEP is violated by electrons, using the very clean method of searching for PEP forbidden atomic transitions in copper. We describe the experimental method, the obtained results, both in terms of the q-parameter and as probability of PEP violation, we briefly discuss the results and present plans to go beyond the actual limit by upgrading the experimental technique using vetoed new spectroscopic fast Silicon Drift Detectors. We discuss as well the possibility of using a similar experimental technique to search for X-rays generated as a signature of the spontaneous collapse of the wave function, predicted by continuous spontaneous localization type theories.
- Published
- 2012
26. A high sensitivity test of the Pauli Exclusion Principle for electrons
- Author
-
C. Guaraldo, Edoardo Milotti, J.-P. Egger, Florin Sirghi, A. Romero Vidal, Johann Zmeskal, Sergio Bartalucci, Laura Sperandio, O. Vazquez Doce, Johann Marton, Mario Bragadireanu, T. Ishiwatari, S. Bertolucci, Eberhard Widmann, Diana Sirghi, E. Laubenstein, Catalina Curceanu, T. Ponta, S. Di Matteo, D. Pietreanu, Michael Cargnelli, M. Iliescu, Gregg Jaeger, Boston University Andrei Khrennikov, Linnaeus University M. Schlosshauer, Niels Bohr Institute G. Weihs, University of Innsbruck, Marton, J., Bartalucci, S., Bertolucci, S., Bragadireanu, M., Cargnelli, M., Curceanu, C., Di Matteo, S., Egger, J. P., Guaraldo, C., Iliescu, M., Ishiwatari, T., Laubenstein, E., Milotti, Edoardo, Pietreanu, D., Ponta, T., Romero Vidal, A., Sirghi, D. L., Sirghi, F., Sperandio, L., Vazquez Doce, O., Widmann, E., and Zmeskal, J.
- Subjects
Physics ,Spin-statistics ,Pauli exclusion principle ,Spin-statistic ,Stability (learning theory) ,Elementary particle ,Fermion ,Electron ,Modern physics ,symbols.namesake ,Theoretical physics ,Quantum mechanics ,symbols ,Sensitivity (control systems) ,Lepton - Abstract
One of the fundamental rules of nature and a pillar in the foundation of quantum theory and thus of modern physics is represented by the Pauli Exclusion Principle. We know that this principle is extremely well fulfilled due to many observations like the order of the elements and the stability of matter. Numerous experiments were performed to search for tiny violation of this rule in various systems. The VIP experiment at Gran Sasso underground laboratory is testing the validity of this principle for electrons with very high precision (order of 10−30). The layout of the present experiment, results obtained so far and new ideas to further increase the precision will be presented.
- Published
- 2011
27. VIP EXPERIMENT: NEW EXPERIMENTAL LIMIT ON PAULI EXCLUSION PRINCIPLE VIOLATION BY ELECTRONS
- Author
-
C. Guaraldo, E. Widmann, Matthias Laubenstein, C. Petrascu, Johann Zmeskal, Mario Bragadireanu, M. Iliescu, T. Ishiwarari, D. Pietreanu, T. Ponta, O. Vazquez Doce, Michael Cargnelli, J.-P. Egger, Johann Marton, S. Bertolucci, Sergio Bartalucci, M. Catitti, S. Di Matteo, Florin Sirghi, Diana Sirghi, Edoardo Milotti, Laura Sperandio, Pietreanu, D., Bartalucci, S., Bertolucci, S., Bragadireanu, M., Cargnelli, M., Catitti, M., Curceanu, C., DI MATTEO, S., Egger, J. P., Guaraldo, C., Iliescu, M., Ishiwatari, T., Laubenstein, M., Marton, J., Milotti, Edoardo, Ponta, T., Sirghi, D. L., Sirghi, F., Sperandio, L., VAZQUEZ DOCE, O., Widmann, E., and Zmeskal, J.
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Pauli Exclusion Principle violations ,Parastatistics ,quantum mechanics ,Astronomy and Astrophysics ,Electron ,Pauli Exclusion Principle violations, parastatistics, quantum mechanics ,Atomic and Molecular Physics, and Optics ,symbols.namesake ,Copper atom ,Pauli exclusion principle ,Orders of magnitude (time) ,parastatistics ,Quantum mechanics ,symbols ,Limit (mathematics) ,Spin (physics) - Abstract
The VIP (Violation of the Pauli Exclusion Principle) experiment is investigating one of the basic principles of modern physics, searching for anomalous X-rays emitted by copper atoms in a conductor: any detection of these anomalous X-rays would mark a Pauli forbidden transition. VIP is currently taking data at the Gran Sasso underground laboratories, and its scientific goal is to improve by three-four orders of magnitude the previous limit on the probability of Pauli violating transitions, bringing it into the 10-29÷-30 region. The new experimental results, together with future plans, are presented.
- Published
- 2009
28. Experimental search for the 'impossible atoms' Pauli Exclusion Principle violation and spontaneous collapse of the wave function at test
- Author
-
M. Iliescu, Carolina Berucci, S. Di Matteo, K. Piscicchia, Michael Cargnelli, Matthias Laubenstein, Diana Sirghi, Florin Sirghi, L. De Paolis, A. d'Uffizi, Sergio Bartalucci, Catalina Curceanu, Johann Marton, O. Vazquez Doce, C. Guaraldo, E. Sbardella, Angelo Bassi, T. Ponta, Edoardo Milotti, Hexi Shi, Johann Zmeskal, A. M. Bragadireanu, Sandro Donadi, T. Ishiwatari, D. Pietreanu, Alberto Clozza, Laura Sperandio, Sergio Bertolucci, J.-P. Egger, Alessandro Scordo, Curceanu, C., Bartalucci, S., Bassi, Angelo, Bertolucci, S., Berucci, C., Bragadireanu, A. M., Cargnelli, M., Clozza, A., De Paolis, L., Di Matteo, S., Donadi, Sandro, D'Uffizi, A., Egger, J. P., Guaraldo, C., Iliescu, M., Ishiwatari, T., Laubenstein, M., Marton, J., Milotti, Edoardo, Pietreanu, D., Piscicchia, K., Ponta, T., Sbardella, E., Scordo, A., Shi, H., Sirghi, D. L., Sirghi, F., Sperandio, L., Doce, O. Vazquez, and Zmeskal, J.
- Subjects
Physics ,History ,Symmetrisation principle ,010308 nuclear & particles physics ,Electron ,State (functional analysis) ,Quantum Mechanic ,Quantum Mechanics ,Experimental tests of fundamental symmetries ,01 natural sciences ,Computer Science Applications ,Education ,symbols.namesake ,Pauli exclusion principle ,Quantum mechanics ,0103 physical sciences ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,symbols ,Limit (mathematics) ,010306 general physics ,Wave function collapse ,Order of magnitude - Abstract
Many experiments investigated the possible violation of the Pauli Exclusion Principle (PEP) since its discovery in 1925. The VIP(Violation of the Pauli Principle) experiment tested the PEP by measuring the probability for an external electron to be captured and undergo a 2p to 1s transition during its cascading process, with the 1s state already occupied by two electrons. This transition is forbidden by the PEP. The VIP experiment resulted in an upper limit for the probability of PEP violation of 4.7 × 10−29. Currently a setup for the follow up experiment VIP2 is under preparation. The goal of this experiment is to improve the upper limit for the violation of the PEP by two orders of magnitude, by using new X-ray detectors and by implementing an active shielding. We then present the idea of using an analogous experimental technique to search for X rays as a signature of the spontaneous collapse of the wave function, predicted by the continuous spontaneous localization theories, and discuss some very encouraging preliminary results.
- Published
- 2015
29. Experimental tests of Quantum Mechanics: from Pauli Exclusion Principle Violation to spontaneous collapse models
- Author
-
J.-P. Egger, Michael Cargnelli, M. Iliescu, Angelo Bassi, Mario Bragadireanu, Matthias Laubenstein, Sergio Bartalucci, Edoardo Milotti, Eberhard Widmann, S. Di Matteo, A. Romero Vidal, Johann Zmeskal, Alberto Clozza, T. Ishiwatari, Laura Sperandio, D. Pietreanu, Diana Sirghi, M. Poli Lener, Florin Sirghi, C. Guaraldo, Sergio Bertolucci, A. Rizzo, Alessandro Scordo, Sandro Donadi, Catalina Curceanu, Johann Marton, O. Vazquez Doce, T. Ponta, Curceanu, C., Bartalucci, S., Bassi, Angelo, Bertolucci, S., Bragadireanu, M., Cargnelli, M., Clozza, M., Di Matteo, S., Donadi, S., Egger, J. P., Guaraldo, C., Iliescu, M., Ishiwatari, T., Laubenstein, M., Marton, J., Milotti, Edoardo, Pietreanu, D., Poli Lener, M., Ponta, T., Rizzo, A., Romero Vidal, A., Scordo, A., Sirghi, D. L., Sirghi, F., Sperandio, L., Vazquez Doce, O., Widmann, E., and Zmeskal, J.
- Subjects
Physics ,History ,Electron ,Fermion ,Pauli principle ,Quantum mechanics ,Quantum mechanic ,Experimental tests ,Computer Science Applications ,Education ,symbols.namesake ,Pauli exclusion principle ,Symmetrization principle ,symbols ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Field theory (psychology) ,Limit (mathematics) ,Quantum field theory ,Wave function collapse ,Boson - Abstract
The Pauli exclusion principle (PEP) and, more generally, the spin-statistics connection, is at the very basis of our understanding of matter. The PEP spurs, presently, a lively debate on its possible limits, deeply rooted in the very foundations of Quantum Field Theory. Therefore, it is extremely important to test the limits of its validity. Quon theory provides a suitable mathematical framework of possible violation of PEP, where the q violation parameter translates into a probability of violating PEP. Experimentally, setting a bound on PEP violation means confining the q-parameter to a value very close to either 1 (for bosons) or -1 (for fermions). The VIP (Violation of the Pauli exclusion principle) experiment established a limit on the probability that PEP is violated by electrons, using the method of searching for PEP forbidden atomic transitions in copper. We describe the experimental method, the obtained results, both in terms of the q-parameter and as probability of PEP violation, we briefly discuss the results and present future plans to go beyond the actual limit by upgrading the experimental technique using vetoed new spectroscopic fast Silicon Drift Detectors. We mention as well the possibility of using a similar experimental technique to search for eventual X-rays generated as a signature of the spontaneous collapse of the wave function, predicted by continuous spontaneous localization type theories.
- Published
- 2012
30. Testing the Pauli Exclusion Principle for electrons
- Author
-
Matthias Laubenstein, Alessandro Scordo, O. Vazquez Doce, Edoardo Milotti, Sergio Bertolucci, Florin Sirghi, T. Ponta, Johann Marton, Sergio Bartalucci, Laura Sperandio, Dorel Pietreanu, T. Ishiwatari, Mario Bragadireanu, C. Guaraldo, S. Di Matteo, Catalina Curceanu, A. Romero Vidal, Eberhard Widmann, Carolina Berucci, K. Piscicchia, Michael Cargnelli, D. L. Sirghi, M. Iliescu, J.-P. Egger, Johann Zmeskal, AA. VV., Marton, J., Bartalucci, S., Bertolucci, S., Bragadireanu, M., Cargnelli, M., Curceanu, C., Di Matteo, S., Egger, J. P., Guaraldo, C., Iliescu, M., Ishiwatari, T., Laubenstein, M., Milotti, Edoardo, Pietreanu, D., Ponta, T., Rizzo, A., Romero Vidal, A., Sbardella, E., Scordo, A., Sirghi, D. L., Sirghi, F., Sperandio, L., Vazquez Doce, O., Widmann, E., Zmeskal, J., J., Marton, S., Bartalucci, S., Bertolucci, C., Berucci, M., Bragadireanu, M., Cargnelli, C., Curceanu, S., Di Matteo, J. P., Egger, C., Guaraldo, M., Iliescu, T., Ishiwatari, M., Laubenstein, D., Pietreanu, K., Piscicchia, T., Ponta, A., Romero Vidal, A., Scordo, D. L., Sirghi, F., Sirghi, L., Sperandio, O., Vazquez Doce, E., Widmann, and J., Zmeskal
- Subjects
Boson systems ,Particle physics ,History ,Quantum decoherence ,Physics - Instrumentation and Detectors ,quantum statistical methods ,FOS: Physical sciences ,Electron ,01 natural sciences ,Education ,Orders of magnitude (entropy) ,Fermion systems and electron ga ,symbols.namesake ,Pauli exclusion principle ,parastatistics ,Pauli Exclusion Principle violations ,quantum mechanics ,Atom ,0103 physical sciences ,Nuclear Physics - Experiment ,Nuclear Experiment (nucl-ex) ,Pauli Exclusion Principle violation ,010306 general physics ,Nuclear Experiment ,Physics ,Fermion systems and electron gas ,Decoherence ,open systems ,Boson system ,010308 nuclear & particles physics ,Instrumentation and Detectors (physics.ins-det) ,Fermion ,Computer Science Applications ,symbols ,Measuring instrument ,parastatistic ,open system ,Lepton - Abstract
One of the fundamental rules of nature and a pillar in the foundation of quantum theory and thus of modern physics is represented by the Pauli Exclusion Principle. We know that this principle is extremely well fulfilled due to many observations. Numerous experiments were performed to search for tiny violation of this rule in various systems. The experiment VIP at the Gran Sasso underground laboratory is searching for possible small violations of the Pauli Exclusion Principle for electrons leading to forbidden X-ray transitions in copper atoms. VIP is aiming at a test of the Pauli Exclusion Principle for electrons with high accuracy, down to the level of 10$^{-29}$ - 10$^{-30}$, thus improving the previous limit by 3-4 orders of magnitude. The experimental method, results obtained so far and new developments within VIP2 (follow-up experiment at Gran Sasso, in preparation) to further increase the precision by 2 orders of magnitude will be presented., Proceedings DISCRETE 2012-Third Symposium on Prospects in the Physics of Discrete Symmetries, Lisbon, December 3-7, 2012
- Published
- 2011
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.