1. IP-10 and CXCR3 signaling inhibit Zika virus replication in human prostate cells.
- Author
-
Spencer Clinton JL, Tran LL, Vogt MB, Rowley DR, Kimata JT, and Rico-Hesse R
- Subjects
- Animals, Cell Line, Cell Proliferation, Cell Survival, Chemokine CXCL10 genetics, Culicidae virology, Gene Expression Regulation, Haplorhini virology, Humans, Immunity, Innate, Male, Prostate cytology, Prostate immunology, Receptors, CXCR3 genetics, Serial Passage, Signal Transduction, Virus Replication, Zika Virus immunology, Zika Virus Infection genetics, Zika Virus Infection virology, Chemokine CXCL10 metabolism, Prostate virology, Receptors, CXCR3 metabolism, Zika Virus physiology, Zika Virus Infection immunology
- Abstract
Our previous studies have shown that Zika virus (ZIKV) replicates in human prostate cells, suggesting that the prostate may serve as a long-term reservoir for virus transmission. Here, we demonstrated that the innate immune responses generated to three distinct ZIKV strains (all isolated from human serum) were significantly different and dependent on their passage history (in mosquito, monkey, or human cells). In addition, some of these phenotypic differences were reduced by a single additional cell culture passage, suggesting that viruses that have been passaged more than 3 times from the patient sample will no longer reflect natural phenotypes. Two of the ZIKV strains analyzed induced high levels of the IP-10 chemokine and IFNγ in human prostate epithelial and stromal mesenchymal stem cells. To further understand the importance of these innate responses on ZIKV replication, we measured the effects of IP-10 and its downstream receptor, CXCR3, on RNA and virus production in prostate cells. Treatment with IP-10, CXCR3 agonist, or CXCR3 antagonist significantly altered ZIKV viral gene expression, depending on their passage in cells of relevant hosts (mosquito or human). We detected differences in gene expression of two primary CXCR3 isoforms (CXCR3-A and CXCR3-B) on the two cell types, possibly explaining differences in viral output. Lastly, we examined the effects of IP-10, agonist, or antagonist on cell death and proliferation under physiologically relevant infection rates, and detected no significant differences. Although we did not measure protein expression directly, our results indicate that CXCR3 signaling may be a target for therapeutics, to ultimately stop sexual transmission of this virus., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2020
- Full Text
- View/download PDF