1. Exact Results for the Isotropic Spin-1/2 Heisenberg Chain With Dissipative Boundary Driving
- Author
-
V. Yu. Popkov, Gunter M. Schütz, Dragi Karevski, Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Institut für Theoretische Physik [Köln], Universität zu Köln, Laboratoire de Physique et Chimie Théoriques (LPCT), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Forschungszentrum Jülich GmbH | Centre de recherche de Juliers, Helmholtz-Gemeinschaft = Helmholtz Association, Institut Jean Lamour (IJL), and Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Physics ,[PHYS]Physics [physics] ,Spins ,Isotropy ,Non-equilibrium thermodynamics ,Statistical and Nonlinear Physics ,01 natural sciences ,Magnetization ,Quantum mechanics ,0103 physical sciences ,Dissipative system ,010307 mathematical physics ,010306 general physics ,Spin (physics) ,Mathematical Physics ,Quantum fluctuation ,ComputingMilieux_MISCELLANEOUS ,Ansatz - Abstract
International audience; We consider the open isotropic spin-1/2 Heisenberg quantum spin chain with a finite number N of sites coupled at the ends to a dissipative environment that favors polarization of the boundary spins in different directions. We review the matrix product ansatz (MPA) that yields the exact reduced density matrix of the Heisenberg chain. We develop the matrix algebra coming from the MPA in more detail than in previous work. We hence obtain exact results for the nonequilibrium partition function, about the impact of quantum fluctuations on the targeted boundary states, and for current–magnetization correlations in the steady state. The boundary states turn out to be pure to the order o(N−2). We show that the local magnetization and the local current perpendicular to the plane spanned by the boundary polarizations exhibit long-range correlations while the local magnetization correlations with the local in-plane currents are strongly suppressed.
- Published
- 2019
- Full Text
- View/download PDF