Back to Search Start Over

Exact Results for the Isotropic Spin-1/2 Heisenberg Chain With Dissipative Boundary Driving

Authors :
V. Yu. Popkov
Gunter M. Schütz
Dragi Karevski
Helmholtz Institute for Radiation and Nuclear Physics
University of Bonn
Institut für Theoretische Physik [Köln]
Universität zu Köln
Laboratoire de Physique et Chimie Théoriques (LPCT)
Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Forschungszentrum Jülich GmbH | Centre de recherche de Juliers
Helmholtz-Gemeinschaft = Helmholtz Association
Institut Jean Lamour (IJL)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Source :
Theoretical and Mathematical Physics, Theoretical and Mathematical Physics, Consultants bureau, 2019, 198 (2), pp.296-315. ⟨10.1134/S0040577919020107⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; We consider the open isotropic spin-1/2 Heisenberg quantum spin chain with a finite number N of sites coupled at the ends to a dissipative environment that favors polarization of the boundary spins in different directions. We review the matrix product ansatz (MPA) that yields the exact reduced density matrix of the Heisenberg chain. We develop the matrix algebra coming from the MPA in more detail than in previous work. We hence obtain exact results for the nonequilibrium partition function, about the impact of quantum fluctuations on the targeted boundary states, and for current–magnetization correlations in the steady state. The boundary states turn out to be pure to the order o(N−2). We show that the local magnetization and the local current perpendicular to the plane spanned by the boundary polarizations exhibit long-range correlations while the local magnetization correlations with the local in-plane currents are strongly suppressed.

Details

Language :
English
ISSN :
00405779
Database :
OpenAIRE
Journal :
Theoretical and Mathematical Physics, Theoretical and Mathematical Physics, Consultants bureau, 2019, 198 (2), pp.296-315. ⟨10.1134/S0040577919020107⟩
Accession number :
edsair.doi.dedup.....34748ca0b77471b121ee98687873c4a6
Full Text :
https://doi.org/10.1134/S0040577919020107⟩