4 results on '"Massine Kelai"'
Search Results
2. Voltage-Induced Bistability of Single Spin-Crossover Molecules in a Two-Dimensional Monolayer
- Author
-
Marie-Laure Boillot, Jérôme Lagoute, Kaushik Bairagi, Massine Kelai, Amandine Bellec, Vincent Repain, Yongfeng Tong, Yann Girard, Sylvie Rousset, Talal Mallah, Cristian Enachescu, Laboratoire Matériaux et Phénomènes Quantiques (MPQ (UMR_7162)), Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Alexandru Ioan Cuza University of Iași [Romania], and European Project: 766726,211587,COSMICS(2017)
- Subjects
Materials science ,Spintronics ,Spin states ,Bistability ,Relaxation (NMR) ,[CHIM.MATE]Chemical Sciences/Material chemistry ,Molecular physics ,law.invention ,Spin crossover ,law ,Monolayer ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,General Materials Science ,Physical and Theoretical Chemistry ,Scanning tunneling microscope ,Spin-½ - Abstract
International audience; Bistable spin-crossover molecules are particularly interesting for the development of innovative electronic and spintronic devices as they present two spin states that can be controlled by external stimuli. In this paper, we report the voltage-induced switching of the high spin/low spin electronic states of spin-crossover molecules self-assembled in dense 2D networks on Au(111) and Cu(111) by scanning tunneling microscopy at low temperature. On Au(111), voltage pulses lead to the nonlocal switching of the molecules from any─high or low─spin state to the other followed by a spontaneous relaxation toward their initial state within minutes. On the other hand, on Cu(111), single molecules can be addressed at will. They retain their new electronic configuration after a voltage pulse. The memory effect demonstrated on Cu(111) is due to an interplay between long-range intermolecular interaction and molecule/substrate coupling as confirmed by mechanoelastic simulations.
- Published
- 2021
- Full Text
- View/download PDF
3. Negative Differential Resistance in Spin-Crossover Molecular Devices
- Author
-
Dongzhe Li, Yongfeng Tong, Kaushik Bairagi, Massine Kelai, Yannick J. Dappe, Jérôme Lagoute, Yann Girard, Sylvie Rousset, Vincent Repain, Cyrille Barreteau, Mads Brandbyge, Alexander Smogunov, Amandine Bellec, Centre d'élaboration de matériaux et d'études structurales (CEMES), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Matériaux et Phénomènes Quantiques (MPQ (UMR_7162)), Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Service de physique de l'état condensé (SPEC - UMR3680), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and Danmarks Tekniske Universitet = Technical University of Denmark (DTU)
- Subjects
Coulomb blockade ,Condensed Matter - Mesoscale and Nanoscale Physics ,Negative differential resistance ,Landauer-Büttiker scattering theory ,Spin-crossover molecule ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,scanning tunneling microscopy ,FOS: Physical sciences ,General Materials Science ,Physical and Theoretical Chemistry ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,density functional theory - Abstract
We demonstrate, based on low-temperature scanning tunneling microscopy (STM) and spectroscopy, a pronounced negative differential resistance (NDR) in spin-crossover (SCO) molecular devices, where a Fe$^{\text{II}}$ SCO molecule is deposited on surfaces. The STM measurements reveal that the NDR is robust with respect to substrate materials, temperature, and the number of SCO layers. This indicates that the NDR is intrinsically related to the electronic structure of the SCO molecule. Experimental results are supported by density functional theory (DFT) with non-equilibrium Green's functions (NEGF) calculations and a generic theoretical model. While the DFT+NEGF calculations reproduce NDR for a special atomically-sharp STM tip, the effect is attributed to the energy-dependent tip density of states rather than the molecule itself. We, therefore, propose a Coulomb blockade model involving three molecular orbitals with very different spatial localization as suggested by the molecular electronic structure., Comment: 4 figures
- Published
- 2022
- Full Text
- View/download PDF
4. Thermal Bistability of an Ultrathin Film of Iron(II) Spin-Crossover Molecules Directly Adsorbed on a Metal Surface
- Author
-
Cristian Enachescu, Yann Girard, Massine Kelai, Philippe Sainctavit, Marie-Laure Boillot, M.-A. Arrio, Arthur Tauzin, Jérôme Lagoute, Sylvie Rousset, Edwige Otero, Talal Mallah, Weibin Li, Vincent Repain, Amandine Bellec, Laboratoire Matériaux et Phénomènes Quantiques (MPQ (UMR_7162)), Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Alexandru Ioan Cuza University of Iasi, University of Iasi, Grant of the Romanian ministry of research, Innovation and Digitization, CNCS/CCCDI-UEFISCDI, project N° PN-III-P4-ID-PCE-2020-1946, European Project: 766726,211587,COSMICS(2017), Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), and SOLEIL Synchrotron, L'Orme des Merisiers, 91198 Gif-sur-Yvette, France
- Subjects
Materials science ,Absorption spectroscopy ,Bistability ,02 engineering and technology ,Substrate (electronics) ,[CHIM.INOR]Chemical Sciences/Inorganic chemistry ,010402 general chemistry ,01 natural sciences ,Condensed Matter::Materials Science ,symbols.namesake ,Thermal Bistability ,Spin crossover ,Monolayer ,General Materials Science ,[CHIM.COOR]Chemical Sciences/Coordination chemistry ,Physical and Theoretical Chemistry ,ComputingMilieux_MISCELLANEOUS ,Arrhenius equation ,Substrate Interaction ,Spintronics ,Mechanoelastic Model ,[CHIM.MATE]Chemical Sciences/Material chemistry ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,X-ray Absorption Spectroscopy ,Spin-Crossover ,Chemical physics ,symbols ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,0210 nano-technology - Abstract
Spin-crossover molecules are very attractive compounds to realize multifunctional spintronic devices. Understanding their properties when deposited on metals is therefore crucial for their future rational implementation as ultrathin films in such devices. Using X-ray absorption spectroscopy, we study the thermal transition of the spin-crossover compound FeII((3,5-(CH3)2Pz)3BH)2 from submonolayer to multilayers on a Cu(111) substrate. We determine how the residual fraction of high spin molecules at low temperature, as well as the bistability range and the temperature of switching, depends on the layer thickness. The most spectacular effect is the clear opening of a 35 ± 9 K thermal hysteresis loop for a 3.0 ± 0.7 monolayers thick film. To better understand the role played by the substrate and the dimensionality on the thermal bistability, we have performed Monte Carlo Arrhenius simulations in the framework of a mechanoelastic model that include a molecule-substrate interaction. This model reproduces well the main features observed experimentally and can predict how the spin-crossover transition is modified by the thickness and the substrate interaction.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.