Back to Search Start Over

Negative Differential Resistance in Spin-Crossover Molecular Devices

Authors :
Dongzhe Li
Yongfeng Tong
Kaushik Bairagi
Massine Kelai
Yannick J. Dappe
Jérôme Lagoute
Yann Girard
Sylvie Rousset
Vincent Repain
Cyrille Barreteau
Mads Brandbyge
Alexander Smogunov
Amandine Bellec
Centre d'élaboration de matériaux et d'études structurales (CEMES)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT)
Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Matériaux et Phénomènes Quantiques (MPQ (UMR_7162))
Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Service de physique de l'état condensé (SPEC - UMR3680)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
Danmarks Tekniske Universitet = Technical University of Denmark (DTU)
Source :
Journal of Physical Chemistry Letters, Journal of Physical Chemistry Letters, 2022, 13, pp.7514-7520. ⟨10.1021/acs.jpclett.2c01934⟩
Publication Year :
2022
Publisher :
arXiv, 2022.

Abstract

We demonstrate, based on low-temperature scanning tunneling microscopy (STM) and spectroscopy, a pronounced negative differential resistance (NDR) in spin-crossover (SCO) molecular devices, where a Fe$^{\text{II}}$ SCO molecule is deposited on surfaces. The STM measurements reveal that the NDR is robust with respect to substrate materials, temperature, and the number of SCO layers. This indicates that the NDR is intrinsically related to the electronic structure of the SCO molecule. Experimental results are supported by density functional theory (DFT) with non-equilibrium Green's functions (NEGF) calculations and a generic theoretical model. While the DFT+NEGF calculations reproduce NDR for a special atomically-sharp STM tip, the effect is attributed to the energy-dependent tip density of states rather than the molecule itself. We, therefore, propose a Coulomb blockade model involving three molecular orbitals with very different spatial localization as suggested by the molecular electronic structure.<br />Comment: 4 figures

Details

ISSN :
19487185
Database :
OpenAIRE
Journal :
Journal of Physical Chemistry Letters, Journal of Physical Chemistry Letters, 2022, 13, pp.7514-7520. ⟨10.1021/acs.jpclett.2c01934⟩
Accession number :
edsair.doi.dedup.....a72d9ac61b47c9a9e76690a3ff6e9677
Full Text :
https://doi.org/10.48550/arxiv.2206.13767