1. Bimetallic Pt-IrO x /g-C 3 N 4 Photocatalysts for the Highly Efficient Overall Water Splitting under Visible Light.
- Author
-
Sidorenko, Nikolay D., Topchiyan, Polina A., Saraev, Andrey A., Gerasimov, Evgeny Yu., Zhurenok, Angelina V., Vasilchenko, Danila B., and Kozlova, Ekaterina A.
- Subjects
PHOSPHORESCENCE ,VISIBLE spectra ,PHOTOCATALYSTS ,PHOTOCATALYTIC oxidation ,X-ray photoelectron spectroscopy ,BAND gaps ,REFLECTANCE spectroscopy - Abstract
Two series of bimetallic photocatalysts (0.5% Pt/0.01–0.5% IrO
x /g-C3 N4 and 0.1% Pt/0.01–0.1% IrOx /g-C3 N4 ) were synthesized by the thermolysis of melamine cyanurate and a successive deposition of platinum and iridium labile complexes (Me4 N)2 [Pt2 (μ-OH)2 (NO3 )8 ] and fac-[Ir(H2 O)3 (NO2 )3 . The synthesized photocatalysts were studied by a set of physicochemical analysis techniques. Platinum exists in two states, with up to 60% in metallic form and the rest in the Pt2+ state, while iridium is primarily oxidized to the Ir3+ state, which was determined by X-ray photoelectron spectroscopy (XPS). The specific surface area (SBET ), which is determined by low-temperature nitrogen adsorption, ranges from 80 to 100 m2 g−1 and the band gap energy (Eg ) value is in the range of 2.75–2.80 eV as found by diffuse reflectance spectroscopy (DRS). The activity of the photocatalysts was tested in the photocatalytic production of hydrogen from ultrapure water under visible light (λ = 400 nm). It was found that the splitting of water occurs with the formation of the stochiometric amount of H2 O2 as an oxidation product. Two photocatalysts 0.5% Pt/0.01% IrOx /g-C3 N4 and 0.1% Pt/0.01% IrOx /g-C3 N4 showed the highest activity at 100 μmol h−1 gcat −1 , which is among the highest in H2 production published for such systems. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF