Back to Search Start Over

Bimetallic Pt-IrO x /g-C 3 N 4 Photocatalysts for the Highly Efficient Overall Water Splitting under Visible Light.

Authors :
Sidorenko, Nikolay D.
Topchiyan, Polina A.
Saraev, Andrey A.
Gerasimov, Evgeny Yu.
Zhurenok, Angelina V.
Vasilchenko, Danila B.
Kozlova, Ekaterina A.
Source :
Catalysts (2073-4344); Apr2024, Vol. 14 Issue 4, p225, 17p
Publication Year :
2024

Abstract

Two series of bimetallic photocatalysts (0.5% Pt/0.01–0.5% IrO<subscript>x</subscript>/g-C<subscript>3</subscript>N<subscript>4</subscript> and 0.1% Pt/0.01–0.1% IrO<subscript>x</subscript>/g-C<subscript>3</subscript>N<subscript>4</subscript>) were synthesized by the thermolysis of melamine cyanurate and a successive deposition of platinum and iridium labile complexes (Me<subscript>4</subscript>N)<subscript>2</subscript>[Pt<subscript>2</subscript>(μ-OH)<subscript>2</subscript>(NO<subscript>3</subscript>)<subscript>8</subscript>] and fac-[Ir(H<subscript>2</subscript>O)<subscript>3</subscript>(NO<subscript>2</subscript>)<subscript>3</subscript>. The synthesized photocatalysts were studied by a set of physicochemical analysis techniques. Platinum exists in two states, with up to 60% in metallic form and the rest in the Pt<superscript>2+</superscript> state, while iridium is primarily oxidized to the Ir<superscript>3+</superscript> state, which was determined by X-ray photoelectron spectroscopy (XPS). The specific surface area (S<subscript>BET</subscript>), which is determined by low-temperature nitrogen adsorption, ranges from 80 to 100 m<superscript>2</superscript> g<superscript>−1</superscript> and the band gap energy (E<subscript>g</subscript>) value is in the range of 2.75–2.80 eV as found by diffuse reflectance spectroscopy (DRS). The activity of the photocatalysts was tested in the photocatalytic production of hydrogen from ultrapure water under visible light (λ = 400 nm). It was found that the splitting of water occurs with the formation of the stochiometric amount of H<subscript>2</subscript>O<subscript>2</subscript> as an oxidation product. Two photocatalysts 0.5% Pt/0.01% IrO<subscript>x</subscript>/g-C<subscript>3</subscript>N<subscript>4</subscript> and 0.1% Pt/0.01% IrO<subscript>x</subscript>/g-C<subscript>3</subscript>N<subscript>4</subscript> showed the highest activity at 100 μmol h<superscript>−1</superscript> g<subscript>cat</subscript><superscript>−1</superscript>, which is among the highest in H<subscript>2</subscript> production published for such systems. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734344
Volume :
14
Issue :
4
Database :
Complementary Index
Journal :
Catalysts (2073-4344)
Publication Type :
Academic Journal
Accession number :
176874568
Full Text :
https://doi.org/10.3390/catal14040225