1. Orally dissolving film as a potential vaccine delivery carrier to prevent influenza virus infection.
- Author
-
Yoon KW, Chu KB, Eom GD, Mao J, Kim SS, and Quan FS
- Subjects
- Animals, Mice, Administration, Oral, Female, Mice, Inbred BALB C, Immunoglobulin A blood, Immunoglobulin A immunology, Immunoglobulin G blood, Lung virology, Lung immunology, Vaccination methods, Drug Carriers, Influenza Vaccines immunology, Influenza Vaccines administration & dosage, Orthomyxoviridae Infections prevention & control, Orthomyxoviridae Infections immunology, Antibodies, Viral blood, Influenza A Virus, H1N1 Subtype immunology, Vaccines, Inactivated immunology, Vaccines, Inactivated administration & dosage
- Abstract
Orally dissolving films (ODF) are designed to be dissolved on the tongue and absorbed in the mouth. It offers multiple advantages over the commonly used needle-based vaccines, especially in terms of convenience allowing safe, painless, and easy self-administration. As the efficacy of ODF-encapsulated influenza vaccines has not been demonstrated, we assessed the protection elicited by inactivated influenza virus (A/PR/8/34, H1N1) vaccine delivered using ODFs in mice. Trehalose and pullulan components of the ODF ensured that the HA antigens of the inactivated PR8 virus retained their stability while ensuring the rapid release of the vaccines upon exposure to murine saliva. Mice were immunized thrice by placing the PR8-ODF on the tongues of mice at 4-week intervals, and vaccine-induced protection was evaluated upon lethal homologous challenge infection. The PR8-ODF vaccination elicited virus-specific serum IgG and IgA antibody responses, hemagglutinin inhibition (HAI), and viral neutralization. Upon challenge infection, ODF vaccination showed higher levels of IgG and IgA antibody responses in the lungs and antibody-secreting cell (ASC) responses in both lung and spleen compared to unimmunized controls. These results corresponded with the enhanced T cell and germinal center B cell responses in the lungs and spleens. Importantly, ODF vaccination significantly reduced lung virus titers and inflammatory cytokines (IFN-γ, IL-6) production compared to unvaccinated control. ODF vaccination ensured 100% survival and prevented weight loss in mice. These findings suggest that influenza vaccine delivery through ODFs could be a promising approach for oral vaccine development., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF