1. Electrochemical cold fusion trials at IPP garching
- Author
-
J. Perchermeier, F. Karger, J. Gernhardt, Hans-Stephan Bosch, and G. A. Wurden
- Subjects
inorganic chemicals ,Heavy water ,Nuclear and High Energy Physics ,business.product_category ,Materials science ,Radiochemistry ,chemistry.chemical_element ,Liquid nitrogen ,Cold fusion ,Nuclear physics ,chemistry.chemical_compound ,Nuclear Energy and Engineering ,chemistry ,Bottle ,Nuclear fusion ,Neutron ,Tritium ,business ,Palladium - Abstract
Following the report of Fleischmann and Pons,(1) we (The Bavarian Bubble Bottle Team) have attempted to reproduce their claims of cold nuclear fusion, and failed. We note that our measurements would not be able to detect neutrons at the level of Joneset al.(2) Three electrolytic cell experiments were conducted using palladium cathodes and Platinum anodes, in a 0.1-Molar solution of LiD in heavy water, without any signs of neutrons, tritium, or gammas above backgrounds, and within ±0.3 watt accuracy calorimetry, no excess heating. Excess heating at the levels of F&P would have been easily detected, if present. Intrinsic tritium, differing from each D2O bottle tested, was however observed. The longest duration experiment ran for 21 days, and was an attempt to duplicate the large “melting incident” of F&P. This was terminated on April 28, 1989, by throwing the vacuum-cast 22 gram, deuterium-loaded palladium cathode directly into liquid nitrogen, immediately next to a bare BF3 counter (backed by 25 cm of moderator), in order to attempt one of the Italian ENEA neutron production variants. No neutrons above backgrounds were seen, while counting for 1 hour, and also none while the piece warmed to room temperature over the next hour. Post-mortem analysis of the darkened, hardened Pd piece showed large crystal grains (up to 2 mm × 2 mm), and continuing evolution of gas bubbles at the grain boundaries even days after the experiment was ended. eight weeks after loading, the catalytically-active palladium piece continued to create heavy water (with exposure to oxygen in the air).
- Published
- 1990