Intermittent behavior near the boundary of phase synchronization in the presence of noise is studied. In certain range of the coupling parameter and noise intensity the intermittency of eyelet and ring intermittencies is shown to take place. Main results are illustrated using the example of two unidirectional coupled Rössler systems. Similar behavior is shown to take place in two hydrodynamical models of Pierce diode coupled unidirectional., {"references":["P. Berge, Y. Pomeau, and C. Vidal, Order within Chaos, John Wiley and\nSons, New York, 1984.","C. M. Kim, G. Yim, J. Ryu, and Y. Park, \"Characteristic relations of\ntype III intermittency in an electronic circuit,\" Phys. Rev. Lett., vol. 80,\nno. 24, pp. 5317–5320, June 1998.","J. L. Perez Velazquez and et al., \"Type III intermittency in human partial\nepilepsy,\" European Journal of Neuroscience, vol. 11, pp. 2571–2576,\n1999.","I. Z. Kiss and J. L. Hudson, \"Phase synchronization and suppression of\nchaos through intermittency in forcing of an electrochemical oscillator,\"\nPhys. Rev. E, vol. 64, no. 4, pp. 046215, 2001.","S. Boccaletti, E. Allaria, R. Meucci, and F. T. Arecchi, \"Experimental\ncharacterization of the transition to phase synchronization of chaotic\nCO2 laser systems,\" Phys. Rev. Lett., vol. 89, no. 19, pp. 194101, 2002.","J. L. Cabrera and J. Milnor, \"On-off intermittency in a human balancing\ntask,\" Phys. Rev. Lett., vol. 89, no. 15, pp. 158702, 2002.","A. E. Hramov, A. A. Koronovskii, I. S. Midzyanovskaya, E. Sitnikova,\nand C. M. Rijn, \"On-off intermittency in time series of spontaneous\nparoxysmal activity in rats with genetic absence epilepsy,\" Chaos, vol.\n16, pp. 043111, 2006.","E. Sitnikova, A. E. Hramov, V. V. Grubov, A. A. Ovchinnkov, and A.\nA. Koronovsky, \"Onoff intermittency of thalamo-cortical oscillations in\nthe electroencephalogram of rats with genetic predisposition to absence\nepilepsy,\" Brain Research, vol. 1436, pp. 147–156, 2012.","M. Dubois, M. Rubio, and P. Berg´e, \"Experimental evidence of\nintermiasttencies associated with a subharmonic bifurcation,\" Phys. Rev.\nLett., vol. 51, pp. 1446–1449, 1983.\n[10] J. F. Heagy, N. Platt, and S. M. Hammel, \"Characterization of on–off\nintermittency,\" Phys. Rev. E, vol. 49, no. 2, pp. 1140–1150, 1994.\n[11] A. S. Pikovsky, G. V. Osipov, M. G. Rosenblum, M. Zaks, and J.\nKurths, \"Attractor–repeller collision and eyelet intermittency at the\ntransition to phase synchronization,\" Phys. Rev. Lett., vol. 79, no. 1, pp.\n47–50, 1997.\n[12] A. E. Hramov, A. A. Koronovskii, M. K. Kurovskaya, and S. Boccaletti,\n\"Ring intermittency in coupled chaotic oscillators at the boundary of\nphase synchronization,\" Phys. Rev. Lett., vol. 97, pp. 114101, 2006.\n[13] A. E. Hramov, A. A. Koronovskii, O. I. Moskalenko, M. O. Zhuravlev,\nV. I. Ponomarenko, and M. D. Prokhorov, \"Intermittency of\nintermittencies,\" CHAOS, vol. 23, no. 3, pp. 033129, 2013.\n[14] N. N. Nikitin, S. V. Pervachev, and V. D. Razevig, \"About solution of\nstochastic diferential equations of follow-up systems,\" Automation and\ntelemechanics, vol. 4, pp. 133–137, 1975, in Russian.\n[15] M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, \"From phase to lag\nsynchronization in coupled chaotic oscillators,\" Phys. Rev. Lett., vol. 78,\nno. 22, pp. 4193–4196, 1997.\n[16] A. E. Hramov, A. A. Koronovskii, and M. K. Kurovskaya, \"Two types\nof phase synchronization destruction,\" Phys. Rev. E, vol. 75, no. 3, pp.\n036205, 2007.\n[17] B. B. Godfrey, \"Oscillatory nonlinear electron flow in Pierce diode,\"\nPhys. Fluids, vol. 30, pp. 1553, 1987.\n[18] H. Matsumoto, H. Yokoyama, and D. Summers, \"Computer simulations\nof the chaotic dynamics of the Pierce beam–plasma system,\" Phys.\nPlasmas, vol. 3, no. 1, pp. 177, 1996.\n[19] R. A. Filatov, A. E. Hramov, and A. A. Koronovskii, \"Chaotic\nsynchronization in coupled spatially extended beam-plasma systems,\"\nPhys. Lett. A, vol. 358, pp. 301–308, 2006.\n[20] P. J. Rouch, Computational fluid dynamics. Hermosa publishers,\nAlbuquerque, 1976.\n[21] O. I. Moskalenko, A. A. Koronovskii, A. E. Hramov, and S. Boccaletti,\n\"Generalized synchronization in mutually coupled oscillators and\ncomplex networks,\" Phys. Rev. E, vol. 86, pp. 036216, 2012.\n[22] A.E. Hramov, A.A. Koronovskii, \"Detecting unstable periodic spatiotemporal\nstates of spatial extended chaotic systems\", Europhysics\nLetters, vol. 80, pp. 10001, 2007.\n[23] O. I. Moskalenko, A. A. Koronovskii, A. E. Hramov, M. O. Zhuravlev,\nYu. I. Levin, \"Cooperation of deterministic and stochastic mechanisms\nresulting in the intermittent behavior\", Chaos, Solitons & Fractals, vol.\n68, pp. 58-64, 2014."]}